- Algorithm Design
- Python Programming
- Data Structure Design
- Analysis of Algorithms
- Hashtables
- Graphs Algorithms
- Intractability
学習内容
Organize, store and process data efficiently using sophisticated data structures and algorithms
Design algorithms and analyze their complexity in terms of running time and space usage
Create applications that are supported by highly efficient algorithms and data structures for the task at hand
Explain fundamental concepts for algorithmic searching and sorting
習得するスキル
この専門講座について
応用学習プロジェクト
Learners will solve data-structure problems by analyzing and designing algorithms for searching, sorting, and indexing; creating trees and graphs; and addressing intractability. Courses also include conceptual algorithm design problems as well as opportunities to program data-structures/algorithms in the python programming language.
Calculus: derivatives and integrals. Probability theory: distributions, expectations, and moments. Some programming experience with Python.
Calculus: derivatives and integrals. Probability theory: distributions, expectations, and moments. Some programming experience with Python.
専門講座の仕組み
コースを受講しましょう。
Courseraの専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。
実践型プロジェクト
すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。
修了証を取得
すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

この専門講座には3コースあります。
Algorithms for Searching, Sorting, and Indexing
This course covers basics of algorithm design and analysis, as well as algorithms for sorting arrays, data structures such as priority queues, hash functions, and applications such as Bloom filters.
Trees and Graphs: Basics
Basic algorithms on tree data structures, binary search trees, self-balancing trees, graph data structures and basic traversal algorithms on graphs. This course also covers advanced topics such as kd-trees for spatial data and algorithms for spatial data.
Dynamic Programming, Greedy Algorithms
This course covers basic algorithm design techniques such as divide and conquer, dynamic programming, and greedy algorithms. It concludes with a brief introduction to intractability (NP-completeness) and using linear/integer programming solvers for solving optimization problems. We will also cover some advanced topics in data structures.
提供:

コロラド大学ボルダー校(University of Colorado Boulder)
CU-Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies.
修士号の取得を目指しましょう
よくある質問
返金ポリシーについて教えてください。
1つのコースだけに登録することは可能ですか?
学資援助はありますか?
無料でコースを受講できますか?
このコースは100%オンラインで提供されますか?実際に出席する必要のあるクラスはありますか?
専門講座を修了するのにどのくらいの期間かかりますか?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
専門講座を修了することで大学の単位は付与されますか?
What will I be able to do upon completing the Specialization?
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。