- visualization
- Measurement Uncertainty
- Probability
- Statistical Hypothesis Testing
- Statistics
- Causal Inference
- Data Visualization (DataViz)
- Empirical Evidence
- Cross-Sectional Analysis
- Basic Descriptive Statistics
- Survey Design
- Statistical Analysis
Data Literacy専門講座
Become a Data-driven Leader. Master the Fundamentals of Interpreting Data
提供:
習得するスキル
この専門講座について
応用学習プロジェクト
Learners will develop expertise in calculating and interpreting statistical quantities, such as causal effects and measures of uncertainty. Learners will apply their knowledge to evaluating quantitative results and solving statistical problems. For the capstone project, learners will select and critically evaluate a piece of published, quantitative research.
An interest in learning how to interpret data in an applied manner
An interest in learning how to interpret data in an applied manner
専門講座の仕組み
コースを受講しましょう。
Courseraの専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。
実践型プロジェクト
すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。
修了証を取得
すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

この専門講座には5コースあります。
Data – What It Is, What We Can Do With It
This course introduces students to data and statistics. By the end of the course, students should be able to interpret descriptive statistics, causal analyses and visualizations to draw meaningful insights.
Measurement – Turning Concepts into Data
This course provides a framework for how analysts can create and evaluate quantitative measures. Consider the many tricky concepts that are often of interest to analysts, such as health, educational attainment and trust in government. This course will explore various approaches for quantifying these concepts. The course begins with an overview of the different levels of measurement and ways to transform variables. We’ll then discuss how to construct and build a measurement model. We’ll next examine surveys, as they are one of the most frequently used measurement tools. As part of this discussion, we’ll cover survey sampling, design and evaluation. Lastly, we’ll consider different ways to judge the quality of a measure, such as by its level of reliability or validity. By the end of this course, you should be able to develop and critically assess measures for concepts worth study. After all, a good analysis is built on good measures.
Quantifying Relationships with Regression Models
This course will introduce you to the linear regression model, which is a powerful tool that researchers can use to measure the relationship between multiple variables. We’ll begin by exploring the components of a bivariate regression model, which estimates the relationship between an independent and dependent variable. Building on this foundation, we’ll then discuss how to create and interpret a multivariate model, binary dependent variable model and interactive model. We’ll also consider how different types of variables, such as categorical and dummy variables, can be appropriately incorporated into a model. Overall, we’ll discuss some of the many different ways a regression model can be used for both descriptive and causal inference, as well as the limitations of this analytical tool. By the end of the course, you should be able to interpret and critically evaluate a multivariate regression analysis.
What are the Chances? Probability and Uncertainty in Statistics
This course focuses on how analysts can measure and describe the confidence they have in their findings. The course begins with an overview of the key probability rules and concepts that govern the calculation of uncertainty measures. We’ll then apply these ideas to variables (which are the building blocks of statistics) and their associated probability distributions. The second half of the course will delve into the computation and interpretation of uncertainty. We’ll discuss how to conduct a hypothesis test using both test statistics and confidence intervals. Finally, we’ll consider the role of hypothesis testing in a regression context, including what we can and cannot learn from the statistical significance of a coefficient. By the end of the course, you should be able to discuss statistical findings in probabilistic terms and interpret the uncertainty of a particular estimate.
提供:

ジョンズ・ホプキンズ大学(Johns Hopkins University)
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.
よくある質問
返金ポリシーについて教えてください。
1つのコースだけに登録することは可能ですか?
学資援助はありますか?
無料でコースを受講できますか?
このコースは100%オンラインで提供されますか?実際に出席する必要のあるクラスはありますか?
専門講座を修了するのにどのくらいの期間かかりますか?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
専門講座を修了することで大学の単位は付与されますか?
What will I be able to do upon completing the Specialization?
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。