この専門講座について

If you want to break into AI, this Specialization will help you do so. Deep Learning is one of the most highly sought after skills in tech. We will help you become good at Deep Learning.

In five courses, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach.

You will also hear from many top leaders in Deep Learning, who will share with you their personal stories and give you career advice.

AI is transforming multiple industries. After finishing this specialization, you will likely find creative ways to apply it to your work.

We will help you master Deep Learning, understand how to apply it, and build a career in AI.

...
Globe

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。
Calendar

フレキシブルなスケジュール

柔軟性のある期限の設定および維持
Intermediate Level

中級レベル

Clock

約3か月で修了

推奨9時間/週
Comment Dots

English

字幕:English, Chinese (Traditional), Ukrainian, Chinese (Simplified), Portuguese (Brazilian), Korean, Turkish, Japanese

習得するスキル

TensorflowConvolutional Neural NetworkArtificial Neural NetworkDeep Learning
Globe

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。
Calendar

フレキシブルなスケジュール

柔軟性のある期限の設定および維持
Intermediate Level

中級レベル

Clock

約3か月で修了

推奨9時間/週
Comment Dots

English

字幕:English, Chinese (Traditional), Ukrainian, Chinese (Simplified), Portuguese (Brazilian), Korean, Turkish, Japanese

専門講座の仕組み

コースを受講しましょう。

Coursera(コーセラ)の専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

実践型プロジェクト

すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。

修了証を取得

すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

how it works

この専門講座には5コースあります。

1コース

Neural Networks and Deep Learning

4.9
38,177件の評価
7,759件のレビュー
If you want to break into cutting-edge AI, this course will help you do so. Deep learning engineers are highly sought after, and mastering deep learning will give you numerous new career opportunities. Deep learning is also a new "superpower" that will let you build AI systems that just weren't possible a few years ago. In this course, you will learn the foundations of deep learning. When you finish this class, you will: - Understand the major technology trends driving Deep Learning - Be able to build, train and apply fully connected deep neural networks - Know how to implement efficient (vectorized) neural networks - Understand the key parameters in a neural network's architecture This course also teaches you how Deep Learning actually works, rather than presenting only a cursory or surface-level description. So after completing it, you will be able to apply deep learning to a your own applications. If you are looking for a job in AI, after this course you will also be able to answer basic interview questions. This is the first course of the Deep Learning Specialization....
2コース

Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

4.9
24,315件の評価
2,741件のレビュー
This course will teach you the "magic" of getting deep learning to work well. Rather than the deep learning process being a black box, you will understand what drives performance, and be able to more systematically get good results. You will also learn TensorFlow. After 3 weeks, you will: - Understand industry best-practices for building deep learning applications. - Be able to effectively use the common neural network "tricks", including initialization, L2 and dropout regularization, Batch normalization, gradient checking, - Be able to implement and apply a variety of optimization algorithms, such as mini-batch gradient descent, Momentum, RMSprop and Adam, and check for their convergence. - Understand new best-practices for the deep learning era of how to set up train/dev/test sets and analyze bias/variance - Be able to implement a neural network in TensorFlow. This is the second course of the Deep Learning Specialization....
3コース

Structuring Machine Learning Projects

4.8
20,000件の評価
2,293件のレビュー
You will learn how to build a successful machine learning project. If you aspire to be a technical leader in AI, and know how to set direction for your team's work, this course will show you how. Much of this content has never been taught elsewhere, and is drawn from my experience building and shipping many deep learning products. This course also has two "flight simulators" that let you practice decision-making as a machine learning project leader. This provides "industry experience" that you might otherwise get only after years of ML work experience. After 2 weeks, you will: - Understand how to diagnose errors in a machine learning system, and - Be able to prioritize the most promising directions for reducing error - Understand complex ML settings, such as mismatched training/test sets, and comparing to and/or surpassing human-level performance - Know how to apply end-to-end learning, transfer learning, and multi-task learning I've seen teams waste months or years through not understanding the principles taught in this course. I hope this two week course will save you months of time. This is a standalone course, and you can take this so long as you have basic machine learning knowledge. This is the third course in the Deep Learning Specialization....
4コース

Convolutional Neural Networks

4.8
14,850件の評価
1,975件のレビュー
This course will teach you how to build convolutional neural networks and apply it to image data. Thanks to deep learning, computer vision is working far better than just two years ago, and this is enabling numerous exciting applications ranging from safe autonomous driving, to accurate face recognition, to automatic reading of radiology images. You will: - Understand how to build a convolutional neural network, including recent variations such as residual networks. - Know how to apply convolutional networks to visual detection and recognition tasks. - Know to use neural style transfer to generate art. - Be able to apply these algorithms to a variety of image, video, and other 2D or 3D data. This is the fourth course of the Deep Learning Specialization....

講師

Andrew Ng

Co-founder, Coursera; Adjunct Professor, Stanford University; formerly head of Baidu AI Group/Google Brain

Head Teaching Assistant - Kian Katanforoosh

Lecturer of Computer Science at Stanford University, deeplearning.ai, Ecole CentraleSupelec

Teaching Assistant - Younes Bensouda Mourri

Mathematical & Computational Sciences, Stanford University, deeplearning.ai

業界パートナー

Industry Partner Logo #0

deeplearning.aiについて

deeplearning.ai is Andrew Ng's new venture which amongst others, strives for providing comprehensive AI education beyond borders....

よくある質問

  • Yes! To get started, click the course card that interests you and enroll. You can enroll and complete the course to earn a shareable certificate, or you can audit it to view the course materials for free. When you subscribe to a course that is part of a Specialization, you’re automatically subscribed to the full Specialization. Visit your learner dashboard to track your progress.

  • This course is completely online, so there’s no need to show up to a classroom in person. You can access your lectures, readings and assignments anytime and anywhere via the web or your mobile device.

  • This Specialization doesn't carry university credit, but some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • Expected:

    Programming experience. The course is taught in Python. We assume you have basic programming skills (understanding of for loops, if/else statements, data structures such as lists and dictionaries).

    Recommended:

    - Mathematics: basic linear algebra (matrix vector operations and notation) will help.

    - Machine Learning: a basic knowledge of machine learning (how do we represent data, what does a machine learning model do) will help. If you have taken Andrew Ng's Machine Learning course on Coursera, you're good of course!

  • No, these courses have sessions that start every few weeks. Once you enroll in a Specialization, you can take the courses at your own pace and even switch sessions if you fall behind. Please visit the Learner Help Center if you have any more questions about enrollment and sessions: https://learner.coursera.help/hc/en-us/articles/209818613

  • To request a receipt: In your Coursera account, open your My Purchases page. Find the course or Specialization you want a receipt for, and click "Email Receipt." The receipt will be sent within 24 hours. More instructions on requesting a receipt are here: https://learner.coursera.help/hc/en-us/articles/208280236

  • Please go to https://www.coursera.org/enterprise for more information, to contact Coursera, and to pick a plan. For each plan, you decide the number of courses each person can take and hand-pick the collection of courses they can choose from.

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。