- Machine Learning
- GPU
- Parallel Computing
- Image Processing
- C++
- Cuda
- Python Programming
- Thread (Computing)
- Algorithms
- C/C++
- Nvidia
- Data Science
GPU Programming専門講座
Solve Challenges with Powerful GPUs. Develop mastery in high performance computing and apply to numerous fields.
提供:
学習内容
Develop CUDA software for running massive computations on commonly available hardware
Utilize libraries that bring well-known algorithms to software without need to redevelop existing capabilities
Students will learn how to develop concurrent software in Python and C/C++ programming languages.
Students will gain an introductory level of understanding of GPU hardware and software architectures.
習得するスキル
この専門講座について
応用学習プロジェクト
Learners will complete at least 2 projects that allow them the freedom to explore CUDA-based solutions to image/signal processing, as well as a topic of choosing, which can come from their current or future professional career. They will also create short demonstrations of their efforts and share their code.
At least 1 year of computer programming experience, preferrably with the C/C++ programming language.
At least 1 year of computer programming experience, preferrably with the C/C++ programming language.
専門講座の仕組み
コースを受講しましょう。
Courseraの専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。
実践型プロジェクト
すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。
修了証を取得
すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

この専門講座には4コースあります。
Introduction to Concurrent Programming with GPUs
This course will help prepare students for developing code that can process large amounts of data in parallel. It will focus on foundational aspects of concurrent programming, such as CPU/GPU architectures, multithreaded programming in C and Python, and an introduction to CUDA software/hardware.
Introduction to Parallel Programming with CUDA
This course will help prepare students for developing code that can process large amounts of data in parallel on Graphics Processing Units (GPUs). It will learn on how to implement software that can solve complex problems with the leading consumer to enterprise-grade GPUs available using Nvidia CUDA. They will focus on the hardware and software capabilities, including the use of 100s to 1000s of threads and various forms of memory.
CUDA at Scale for the Enterprise
This course will aid in students in learning in concepts that scale the use of GPUs and the CPUs that manage their use beyond the most common consumer-grade GPU installations. They will learn how to manage asynchronous workflows, sending and receiving events to encapsulate data transfers and control signals. Also, students will walk through application of GPUs to sorting of data and processing images, implementing their own software using these techniques and libraries.
CUDA Advanced Libraries
This course will complete the GPU specialization, focusing on the leading libraries distributed as part of the CUDA Toolkit. Students will learn how to use CuFFT, and linear algebra libraries to perform complex mathematical computations. The Thrust library’s capabilities in representing common data structures and associated algorithms will be introduced. Using cuDNN and cuTensor they will be able to develop machine learning applications that help with object detection, human language translation and image classification.
提供:

ジョンズ・ホプキンズ大学(Johns Hopkins University)
The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world.
よくある質問
返金ポリシーについて教えてください。
1つのコースだけに登録することは可能ですか?
学資援助はありますか?
無料でコースを受講できますか?
このコースは100%オンラインで提供されますか?実際に出席する必要のあるクラスはありますか?
専門講座を修了するのにどのくらいの期間かかりますか?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
専門講座を修了することで大学の単位は付与されますか?
What will I be able to do upon completing the Specialization?
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。