この専門講座について
6,355 最近の表示

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

上級レベル

約2か月で修了

推奨11時間/週

英語

字幕:英語

習得するスキル

Data ScienceInformation EngineeringArtificial Intelligence (AI)Machine LearningPython Programming

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

上級レベル

約2か月で修了

推奨11時間/週

英語

字幕:英語

専門講座の仕組み

コースを受講しましょう。

Coursera(コーセラ)の専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

実践型プロジェクト

すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。

修了証を取得

すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

how it works

この専門講座には6コースあります。

コース1

AI Workflow: Business Priorities and Data Ingestion

コース2

AI Workflow: Data Analysis and Hypothesis Testing

コース3

AI Workflow: Feature Engineering and Bias Detection

4.8
5件の評価
コース4

AI Workflow: Machine Learning, Visual Recognition and NLP

4.7
6件の評価
1件のレビュー

講師

Avatar

Mark J Grover

Digital Content Delivery Lead
IBM Data & AI Learning
Avatar

Ray Lopez, Ph.D.

Data Science Curriculum Leader
IBM Data & Artificial Intelligence

IBMについて

IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame....

よくある質問

  • はい。まず始めに興味のあるコースカードをクリックして登録します。コースに登録して修了することによって、共有できる修了証を取得するか、無料でコースを聴講してコースの教材を確認することができます。専門講座の一部であるコースにサブスクライブすると、専門講座全体に自動的にサブスクライブされます。進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

  • このコースは完全にオンラインで提供されているため、実際に教室に出席する必要はありません。Webまたはモバイル機器からいつでもどこからでも講義、学習用教材、課題にアクセスできます。

  • The entire specialization will require 35-40 hours of study.  Each of the 6 courses requires 4 to 9 hours of study each.

  • It is assumed you have a solid understanding of the following topics prior to starting this course: Fundamental understanding of Linear Algebra; Understanding of sampling, probability theory, and probability distributions; Knowledge of descriptive and inferential statistical concepts; General understanding of machine learning techniques and best practices; Practiced understanding of Python and the packages commonly used in data science: NumPy, Pandas, matplotlib, scikit-learn; Familiarity with IBM Watson Studio; Familiarity with the design thinking process. If you are unsure, Course 1 includes a Readiness Exam you can take to see if you are prepared.

  • You are STRONGLY encouraged to complete these courses in order as they are not individual independent courses, but part of a workflow where each course builds on the previous ones.  

  • Sorry, you will not.

  • By the end of this specialization you will be able to:

    1. Build an end to end AI solution. 

    2. Leverage Design Thinking as a framework to work through the translation of business goals into AI technical implementations.

    3. Bring together different capabilities such as Machine Learning, and specialized AI use cases.

    4. Leverage Python as the tool of choice for building AI models, while integrating IBM technologies to facilitate enterprise tasks such as cross-collaboration for the creation of machine learning models, employing out-of-the-box trained models for natural language processing and visual recognition, and deploying models to production.  

  • This specialization targets existing data science practitioners that have expertise building machine learning models, who want to deepen their skills on building and deploying AI in large enterprises. If you are an aspiring Data Scientist, this specialization is NOT for you as you need real world expertise to benefit from the content of these courses.

  • No. Most of the exercises may be completed with open source tools running on your personal computer. However, the exercises are designed with an enterprise focus and are intended to be run in an enterprise environment that allows for easier sharing and collaboration. Some of the exercises in this specialization are heavily focused on deployment and testing of machine learning models and use the IBM Watson tooling found on the IBM Cloud.

  • Yes. All IBM Cloud Data and AI services are based upon open source technologies.

  • The exercises in the course may be completed by anyone using the IBM Cloud "Lite" plan, which is free for use.

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。