この専門講座について
8,278 最近の表示

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

初級レベル

英語

字幕:英語, 中国語(簡体), フランス語, グルジア語, エストニア語, ドイツ語, タイ語, 日本語, ネパール語...

習得するスキル

Ggplot2Data Visualization (DataViz)R ProgrammingObject-Oriented Programming (OOP)

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

初級レベル

英語

字幕:英語, 中国語(簡体), フランス語, グルジア語, エストニア語, ドイツ語, タイ語, 日本語, ネパール語...

専門講座のしくみ

コースを受講しましょう。

Coursera(コーセラ)の専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

実践型プロジェクト

すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。

修了証を取得

すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

how it works

この専門講座には5コースあります。

コース1

The R Programming Environment

4.4
842件の評価
219件のレビュー

This course provides a rigorous introduction to the R programming language, with a particular focus on using R for software development in a data science setting. Whether you are part of a data science team or working individually within a community of developers, this course will give you the knowledge of R needed to make useful contributions in those settings. As the first course in the Specialization, the course provides the essential foundation of R needed for the following courses. We cover basic R concepts and language fundamentals, key concepts like tidy data and related "tidyverse" tools, processing and manipulation of complex and large datasets, handling textual data, and basic data science tasks. Upon completing this course, learners will have fluency at the R console and will be able to create tidy datasets from a wide range of possible data sources.

...
コース2

Advanced R Programming

4.3
395件の評価
96件のレビュー

This course covers advanced topics in R programming that are necessary for developing powerful, robust, and reusable data science tools. Topics covered include functional programming in R, robust error handling, object oriented programming, profiling and benchmarking, debugging, and proper design of functions. Upon completing this course you will be able to identify and abstract common data analysis tasks and to encapsulate them in user-facing functions. Because every data science environment encounters unique data challenges, there is always a need to develop custom software specific to your organization’s mission. You will also be able to define new data types in R and to develop a universe of functionality specific to those data types to enable cleaner execution of data science tasks and stronger reusability within a team.

...
コース3

Building R Packages

4.2
169件の評価
43件のレビュー

Writing good code for data science is only part of the job. In order to maximizing the usefulness and reusability of data science software, code must be organized and distributed in a manner that adheres to community-based standards and provides a good user experience. This course covers the primary means by which R software is organized and distributed to others. We cover R package development, writing good documentation and vignettes, writing robust software, cross-platform development, continuous integration tools, and distributing packages via CRAN and GitHub. Learners will produce R packages that satisfy the criteria for submission to CRAN.

...
コース4

Building Data Visualization Tools

4.0
122件の評価
30件のレビュー

The data science revolution has produced reams of new data from a wide variety of new sources. These new datasets are being used to answer new questions in way never before conceived. Visualization remains one of the most powerful ways draw conclusions from data, but the influx of new data types requires the development of new visualization techniques and building blocks. This course provides you with the skills for creating those new visualization building blocks. We focus on the ggplot2 framework and describe how to use and extend the system to suit the specific needs of your organization or team. Upon completing this course, learners will be able to build the tools needed to visualize a wide variety of data types and will have the fundamentals needed to address new data types as they come about.

...

講師

Avatar

Roger D. Peng, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Brooke Anderson

Assistant Professor, Environmental & Radiological Health Sciences
Colorado State University

ジョンズ・ホプキンズ大学(Johns Hopkins University)について

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world....

よくある質問

  • はい。まず始めに興味のあるコースカードをクリックして登録します。コースに登録して修了することによって、共有できる修了証を取得するか、無料でコースを聴講してコースの教材を確認することができます。専門講座の一部であるコースにサブスクライブすると、専門講座全体に自動的にサブスクライブされます。進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

  • このコースは完全にオンラインで提供されているため、実際に教室に出席する必要はありません。Webまたはモバイル機器からいつでもどこからでも講義、学習用教材、課題にアクセスできます。

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 3-6 months.

  • Some programming experience (in any language) is recommended. We also suggest a working knowledge of mathematics up to algebra (neither calculus or linear algebra are required).

  • We strongly recommend that you take the courses in order.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • You will be able to use R to create new data science tools as part of a team or a community of developers. You will be able to build R packages, develop custom visualizations, and apply modern software development tools to create reusable code for solving data science problems.

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。