この専門講座について

6,508 最近の表示
A Recommender System is a process that seeks to predict user preferences. This Specialization covers all the fundamental techniques in recommender systems, from non-personalized and project-association recommenders through content-based and collaborative filtering techniques, as well as advanced topics like matrix factorization, hybrid machine learning methods for recommender systems, and dimension reduction techniques for the user-product preference space. This Specialization is designed to serve both the data mining expert who would want to implement techniques like collaborative filtering in their job, as well as the data literate marketing professional, who would want to gain more familiarity with these topics. The courses offer interactive, spreadsheet-based exercises to master different algorithms, along with an honors track where you can go into greater depth using the LensKit open source toolkit. By the end of this Specialization, you’ll be able to implement as well as evaluate recommender systems. The Capstone Project brings together the course material with a realistic recommender design and analysis project.
共有できる証明書
修了時に証明書を取得
100%オンラインコース
自分のスケジュールですぐに学習を始めてください。
フレキシブルなスケジュール
柔軟性のある期限の設定および維持
中級レベル
約5ヶ月で完了
3時間/週の推奨ペース
英語
共有できる証明書
修了時に証明書を取得
100%オンラインコース
自分のスケジュールですぐに学習を始めてください。
フレキシブルなスケジュール
柔軟性のある期限の設定および維持
中級レベル
約5ヶ月で完了
3時間/週の推奨ペース
英語

専門講座の仕組み

コースを受講しましょう。

Courseraの専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

実践型プロジェクト

すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。

修了証を取得

すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

この専門講座には5コースあります。

コース1

コース 1

Introduction to Recommender Systems: Non-Personalized and Content-Based

4.5
596件の評価
124件のレビュー
コース2

コース 2

Nearest Neighbor Collaborative Filtering

4.3
294件の評価
66件のレビュー
コース3

コース 3

Recommender Systems: Evaluation and Metrics

4.4
216件の評価
30件のレビュー
コース4

コース 4

Matrix Factorization and Advanced Techniques

4.3
177件の評価
26件のレビュー

提供:

Placeholder

ミネソタ大学(University of Minnesota)

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。