この専門講座について
74,658 最近の表示

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

初級レベル

約7か月で修了

推奨4時間/週

英語

字幕:英語, 韓国語

習得するスキル

Bayesian StatisticsLinear RegressionStatistical InferenceR Programming

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

初級レベル

約7か月で修了

推奨4時間/週

英語

字幕:英語, 韓国語

専門講座のしくみ

コースを受講しましょう。

Coursera(コーセラ)の専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

実践型プロジェクト

すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。

修了証を取得

すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

how it works

この専門講座には5コースあります。

コース1

Introduction to Probability and Data

4.7
3,041件の評価
679件のレビュー

This course introduces you to sampling and exploring data, as well as basic probability theory and Bayes' rule. You will examine various types of sampling methods, and discuss how such methods can impact the scope of inference. A variety of exploratory data analysis techniques will be covered, including numeric summary statistics and basic data visualization. You will be guided through installing and using R and RStudio (free statistical software), and will use this software for lab exercises and a final project. The concepts and techniques in this course will serve as building blocks for the inference and modeling courses in the Specialization.

...
コース2

Inferential Statistics

4.8
1,371件の評価
255件のレビュー

This course covers commonly used statistical inference methods for numerical and categorical data. You will learn how to set up and perform hypothesis tests, interpret p-values, and report the results of your analysis in a way that is interpretable for clients or the public. Using numerous data examples, you will learn to report estimates of quantities in a way that expresses the uncertainty of the quantity of interest. You will be guided through installing and using R and RStudio (free statistical software), and will use this software for lab exercises and a final project. The course introduces practical tools for performing data analysis and explores the fundamental concepts necessary to interpret and report results for both categorical and numerical data

...
コース3

Linear Regression and Modeling

4.7
960件の評価
172件のレビュー

This course introduces simple and multiple linear regression models. These models allow you to assess the relationship between variables in a data set and a continuous response variable. Is there a relationship between the physical attractiveness of a professor and their student evaluation scores? Can we predict the test score for a child based on certain characteristics of his or her mother? In this course, you will learn the fundamental theory behind linear regression and, through data examples, learn to fit, examine, and utilize regression models to examine relationships between multiple variables, using the free statistical software R and RStudio.

...
コース4

ベイズ統計

3.9
545件の評価
161件のレビュー

This course describes Bayesian statistics, in which one's inferences about parameters or hypotheses are updated as evidence accumulates. You will learn to use Bayes’ rule to transform prior probabilities into posterior probabilities, and be introduced to the underlying theory and perspective of the Bayesian paradigm. The course will apply Bayesian methods to several practical problems, to show end-to-end Bayesian analyses that move from framing the question to building models to eliciting prior probabilities to implementing in R (free statistical software) the final posterior distribution. Additionally, the course will introduce credible regions, Bayesian comparisons of means and proportions, Bayesian regression and inference using multiple models, and discussion of Bayesian prediction. We assume learners in this course have background knowledge equivalent to what is covered in the earlier three courses in this specialization: "Introduction to Probability and Data," "Inferential Statistics," and "Linear Regression and Modeling."

...

講師

Avatar

Mine Çetinkaya-Rundel

Associate Professor of the Practice
Department of Statistical Science
Avatar

David Banks

Professor of the Practice
Statistical Science
Avatar

Colin Rundel

Assistant Professor of the Practice
Statistical Science
Avatar

Merlise A Clyde

Professor
Department of Statistical Science

デューク大学(Duke University)について

Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world....

よくある質問

  • はい。まず始めに興味のあるコースカードをクリックして登録します。コースに登録して修了することによって、共有できる修了証を取得するか、無料でコースを聴講してコースの教材を確認することができます。専門講座の一部であるコースにサブスクライブすると、専門講座全体に自動的にサブスクライブされます。進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

  • このコースは完全にオンラインで提供されているため、実際に教室に出席する必要はありません。Webまたはモバイル機器からいつでもどこからでも講義、学習用教材、課題にアクセスできます。

  • Basic math, no programming experience required. A genuine interest in data analysis is a plus!

    In the later courses in the Specialization, we assume knowledge and skills equivalent to those which would have been gained in the prior courses (for example: if you decide to take course four, Bayesian Statistics, without taking the prior three courses we assume you have knowledge of frequentist statistics and R equivalent to what is taught in the first three courses).

  • Yes.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • In this specialization, R is a requirement, and the labs have been enhanced and revised from the previous course. Success in the fourth course and the capstone project will depend heavily on successfully completing the first three courses in this specialization. Therefore, we require all students complete all courses to obtain the certificate.

  • Yes. You will need R and RStudio. Both are free and publicly available. You will need administrator access to your computer to install this software.

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。