この専門講座について
256,248 最近の表示

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

中級レベル

約1か月で修了

推奨10時間/週

英語

字幕:英語

学習内容

  • Check

    Best practices for TensorFlow, a popular open-source machine learning framework to train a neural network for a computer vision applications.

  • Check

    Handle real-world image data and explore strategies to prevent overfitting, including augmentation and dropout.

  • Check

    Build natural language processing systems using TensorFlow.

  • Check

    Apply RNNs, GRUs, and LSTMs as you train them using text repositories.

習得するスキル

Computer VisionConvolutional Neural NetworkMachine LearningNatural Language Processing

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

中級レベル

約1か月で修了

推奨10時間/週

英語

字幕:英語

専門講座のしくみ

コースを受講しましょう。

Coursera(コーセラ)の専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

実践型プロジェクト

すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。

修了証を取得

すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

how it works

この専門講座には4コースあります。

コース1

Introduction to TensorFlow for Artificial Intelligence, Machine Learning, and Deep Learning

4.7
2,037件の評価
408件のレビュー

If you are a software developer who wants to build scalable AI-powered algorithms, you need to understand how to use the tools to build them. This course is part of the upcoming Machine Learning in Tensorflow Specialization and will teach you best practices for using TensorFlow, a popular open-source framework for machine learning. The Machine Learning course and Deep Learning Specialization from Andrew Ng teach the most important and foundational principles of Machine Learning and Deep Learning. This new deeplearning.ai TensorFlow Specialization teaches you how to use TensorFlow to implement those principles so that you can start building and applying scalable models to real-world problems. To develop a deeper understanding of how neural networks work, we recommend that you take the Deep Learning Specialization. The full deeplearning.ai TensorFlow Specialization will be available later this year, but you can get started with Course 1, Introduction to Tensorflow for AI, ML and DL, available now on Coursera.

...
コース2

Convolutional Neural Networks in TensorFlow

4.7
479件の評価
73件のレビュー

If you are a software developer who wants to build scalable AI-powered algorithms, you need to understand how to use the tools to build them. This course is part of the upcoming Machine Learning in Tensorflow Specialization and will teach you best practices for using TensorFlow, a popular open-source framework for machine learning. In Course 2 of the deeplearning.ai TensorFlow Specialization, you will learn advanced techniques to improve the computer vision model you built in Course 1. You will explore how to work with real-world images in different shapes and sizes, visualize the journey of an image through convolutions to understand how a computer “sees” information, plot loss and accuracy, and explore strategies to prevent overfitting, including augmentation and dropout. Finally, Course 2 will introduce you to transfer learning and how learned features can be extracted from models. The Machine Learning course and Deep Learning Specialization from Andrew Ng teach the most important and foundational principles of Machine Learning and Deep Learning. This new deeplearning.ai TensorFlow Specialization teaches you how to use TensorFlow to implement those principles so that you can start building and applying scalable models to real-world problems. To develop a deeper understanding of how neural networks work, we recommend that you take the Deep Learning Specialization. The full deeplearning.ai TensorFlow Specialization will be available later this year, but you can enroll in the first two courses today. We recommend starting with Course 1: Introduction to TensorFlow for AI, ML, and DL.

...
コース3

Natural Language Processing in TensorFlow

4.7
161件の評価
22件のレビュー

If you are a software developer who wants to build scalable AI-powered algorithms, you need to understand how to use the tools to build them. This Specialization will teach you best practices for using TensorFlow, a popular open-source framework for machine learning. In Course 3 of the deeplearning.ai TensorFlow Specialization, you will build natural language processing systems using TensorFlow. You will learn to process text, including tokenizing and representing sentences as vectors, so that they can be input to a neural network. You’ll also learn to apply RNNs, GRUs, and LSTMs in TensorFlow. Finally, you’ll get to train an LSTM on existing text to create original poetry! The Machine Learning course and Deep Learning Specialization from Andrew Ng teach the most important and foundational principles of Machine Learning and Deep Learning. This new deeplearning.ai TensorFlow Specialization teaches you how to use TensorFlow to implement those principles so that you can start building and applying scalable models to real-world problems. To develop a deeper understanding of how neural networks work, we recommend that you take the Deep Learning Specialization.

...
コース4

Sequences, Time Series and Prediction

Course 4 of the deeplearning.ai TensorFlow Specialization will teach you how to solve time series and forecasting problems using RNNs, ConvNets, and the WaveNet architecture. The course will be available soon, but you can pre-enroll now.

...

講師

Avatar

Laurence Moroney

AI Advocate
Google Brain

deeplearning.aiについて

deeplearning.ai is Andrew Ng's new venture which amongst others, strives for providing comprehensive AI education beyond borders....

よくある質問

  • はい。まず始めに興味のあるコースカードをクリックして登録します。コースに登録して修了することによって、共有できる修了証を取得するか、無料でコースを聴講してコースの教材を確認することができます。専門講座の一部であるコースにサブスクライブすると、専門講座全体に自動的にサブスクライブされます。進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

  • このコースは完全にオンラインで提供されているため、実際に教室に出席する必要はありません。Webまたはモバイル機器からいつでもどこからでも講義、学習用教材、課題にアクセスできます。

  • この専門講座では大学の単位は付与されませんが、一部の大学では専門講座修了証を単位として承認する場合があります。詳細については、大学にお問い合わせください。

  • Yes, if you paid a one-time $49 payment for one or more of the courses, you can still subscribe to the Specialization for $49/month. If you pay for one course, you will have access to it for 180 days, or until you complete the course. If you subscribe to the Specialization, you will have access to all four courses until you end your subscription.

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。