Discover the basic concepts of cluster analysis, and then study a set of typical clustering methodologies, algorithms, and applications. This includes partitioning methods such as k-means, hierarchical methods such as BIRCH, and density-based methods such as DBSCAN/OPTICS. Moreover, learn methods for clustering validation and evaluation of clustering quality. Finally, see examples of cluster analysis in applications.

このコースについて
習得するスキル
- Cluster Analysis
- Data Clustering Algorithms
- K-Means Clustering
- Hierarchical Clustering
提供:

イリノイ大学アーバナ・シャンペーン校(University of Illinois at Urbana-Champaign)
The University of Illinois at Urbana-Champaign is a world leader in research, teaching and public engagement, distinguished by the breadth of its programs, broad academic excellence, and internationally renowned faculty and alumni. Illinois serves the world by creating knowledge, preparing students for lives of impact, and finding solutions to critical societal needs.
修士号の取得を目指しましょう
シラバス - 本コースの学習内容
Course Orientation
You will become familiar with the course, your classmates, and our learning environment. The orientation will also help you obtain the technical skills required for the course.
Module 1
Week 2
Week 3
Week 4
Course Conclusion
In the course conclusion, feel free to share any thoughts you have on this course experience.
レビュー
- 5 stars66.58%
- 4 stars23.29%
- 3 stars5.56%
- 2 stars2.02%
- 1 star2.53%
CLUSTER ANALYSIS IN DATA MINING からの人気レビュー
A very good course, it gives me a general idea of how clustering algorithm work.
This was my favorite course in the whole specialization. Everything is explained very concisely and clearly making the subject matter very easy to understand.
Good course for understanding the Cluster Analysis & Algorithms, instructor is very experienced and well explained, thanks
This is a very good course covering all area of clustering. The only thing I feel a little struggle is some algorithm explained too brief, I prefer some detail step by step examples.
データマイニング 専門講座について
The Data Mining Specialization teaches data mining techniques for both structured data which conform to a clearly defined schema, and unstructured data which exist in the form of natural language text. Specific course topics include pattern discovery, clustering, text retrieval, text mining and analytics, and data visualization. The Capstone project task is to solve real-world data mining challenges using a restaurant review data set from Yelp.

よくある質問
いつ講座や課題にアクセスできるようになりますか?
この専門講座をサブスクライブすると何を行うことができるようになりますか?
学資援助はありますか?
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。