Chevron Left
Probabilistic Graphical Models 1: Representation に戻る

スタンフォード大学(Stanford University) による Probabilistic Graphical Models 1: Representation の受講者のレビューおよびフィードバック

4.6
1,356件の評価
302件のレビュー

コースについて

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems. This course is the first in a sequence of three. It describes the two basic PGM representations: Bayesian Networks, which rely on a directed graph; and Markov networks, which use an undirected graph. The course discusses both the theoretical properties of these representations as well as their use in practice. The (highly recommended) honors track contains several hands-on assignments on how to represent some real-world problems. The course also presents some important extensions beyond the basic PGM representation, which allow more complex models to be encoded compactly....

人気のレビュー

ST
2017年7月12日

Prof. Koller did a great job communicating difficult material in an accessible manner. Thanks to her for starting Coursera and offering this advanced course so that we can all learn...Kudos!!

CM
2017年10月22日

The course was deep, and well-taught. This is not a spoon-feeding course like some others. The only downside were some "mechanical" problems (e.g. code submission didn't work for me).

フィルター:

Probabilistic Graphical Models 1: Representation: 176 - 200 / 295 レビュー

by Yang P

2017年4月26日

Great course.

by Nairouz M

2017年2月13日

Very helpful.

by brotherzhao

2020年2月15日

nice course!

by Utkarsh A

2018年12月30日

maza aa gaya

by Musalula S

2018年8月2日

Great course

by Yuri F

2017年5月15日

great course

by 赵紫川

2016年11月27日

Nice course.

by Pedro R

2016年11月9日

great course

by Frank

2017年12月14日

老师太天马行空了。。。

by HOLLY W

2019年5月24日

课程特别好,资料丰富

by Siyeong L

2017年1月21日

Awesome!!!

by Alireza N

2017年1月12日

Excellent!

by dingjingtao

2017年1月7日

excellent!

by Phan T B

2016年12月2日

very good!

by Jax

2017年1月8日

very nice

by Jose A A S

2016年11月25日

Wonderful

by mohammed o

2016年10月18日

Fantastic

by zhou

2016年10月13日

very good

by 张浩悦

2018年11月22日

funny!!

by Alexander A S G

2017年2月9日

Thanks

by oilover

2016年12月2日

老师很棒!!

by 刘仕琪

2016年10月31日

不错的一门课

by Accenture X

2016年10月12日

Great

by Ludovic P

2017年10月29日

I wish I could give 4 and a half star to this course.

On the positive side : there is a lot of value in this course. Professor Koller succeeds in introducing us to PGM representations in a few weeks. IMHO, one should really do all the exercices "for a mention". Without them, this course lacks "hands on" sessions, and is much less interesting. Most programming exercises are great, and the companion quiz are really a plus.

When I followed Professor Ng programming exercises, I was both delighted and frustrated. Delighted because I learned a lot of things. Frustrated because it was sometimes really too easy.

This is not the case for most exercices there. I find them so well prepared, so crafted that I often learned a lot of my first wrong submissions of quiz of programming exercices.

On the negative side : the quality of the sound recordings is sometimes not really good. That is especially true in the first videos. That should not stop you from following this great course ! Some programming exercices were a bit frustrating because their difficulty is more in knowing octave tips and tricks than in PGM. In addition, and this is more embarassing, some exercices do not work, like in Markov Network for OCR https://www.coursera.org/learn/probabilistic-graphical-models/programming/dZmtj/markov-networks-for-ocr I had, as other students, to disable some features and to blindly submit my ansmwers.

Also, some exercises were difficult for me because of very precise English. I guess it might be difficult for native speakers to handle that, but as this course seems to have an international audience, it would be great.

I feel that raising this great course from 4 stars to 5 stars would not require much efforts. Prepare better recordings of the few videos that have really bad sound. Correct those small bugs in exercises. Simplify some English wordings.

I, however, advise this course to all persons interested in this field. And I intend to follow the next course, on inference.

by Jonathan H

2017年6月25日

Excellent course. The video lectures are challenging (had to keep my finger on the pause key) even if you're familiar with the math, since the instructor encapsulates concepts in an amazingly concise manner. This pays off with a lot of "Aha!" moments as strong concepts are combined to create insights, especially starting around week 3. I'm already in love with this subject after 1 part

It would have been nice to have more worked homework problems, since this is a math course. But, this is not necessary to pass the class or understand the concepts. I've purchased Prof Koller's text on PGM and hope to solidify some of the intuitions I'm missing shortly.

Taking off a star because the test cases and grading software for the honors homework assessments were clearly low effort and sometimes incorrect. There were a lot of cases where functions passed all the provided and automatic test cases despite major flaws (e.g. not working for any cases besides n=1), which made it difficult to tell if things worked since the programming style is unique. The homework itself was super interesting and valuable, but I probably spent over 50% of the time fighting the grader instead of learning stuff. Given that I'm a professional programmer and completed most of the homework in 25-50% of the estimated time, I'm guessing that the average student wasted even more time with issues that are ultimately unrelated to our understanding of PGM.