このコースについて
4.5
398件の評価
76件のレビュー

次における5の1コース

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

中級レベル

約16時間で修了

推奨:4 weeks; an average of 3-7 hours per week, plus 2-5 hours per week for honors track. ...

英語

字幕:英語

習得するスキル

Summary StatisticsTerm Frequency Inverse Document Frequency (TF-IDF)Microsoft ExcelRecommender Systems

次における5の1コース

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

中級レベル

約16時間で修了

推奨:4 weeks; an average of 3-7 hours per week, plus 2-5 hours per week for honors track. ...

英語

字幕:英語

シラバス - 本コースの学習内容

1
1時間で修了

Preface

This brief module introduces the topic of recommender systems (including placing the technology in historical context) and provides an overview of the structure and coverage of the course and specialization....
2件のビデオ (合計41分), 1 reading
2件のビデオ
Intro to Course and Specialization13 分
1件の学習用教材
Notes on Course Design and Relationship to Prior Courses10 分
3時間で修了

Introducing Recommender Systems

This module introduces recommender systems in more depth. It includes a detailed taxonomy of the types of recommender systems, and also includes tours of two systems heavily dependent on recommender technology: MovieLens and Amazon.com. There is an introductory assessment in the final lesson to ensure that you understand the core concepts behind recommendations before we start learning how to compute them....
9件のビデオ (合計147分), 2 readings, 2 quizzes
9件のビデオ
Preferences and Ratings17 分
Predictions and Recommendations16 分
Taxonomy of Recommenders I27 分
Taxonomy of Recommenders II21 分
Tour of Amazon.com21 分
Recommender Systems: Past, Present and Future16 分
Introducing the Honors Track7 分
Honors: Setting up the development environment10 分
2件の学習用教材
About the Honors Track10 分
Downloads and Resources10 分
2の練習問題
Closing Quiz: Introducing Recommender Systems20 分
Honors Track Pre-Quiz2 分
2
7時間で修了

Non-Personalized and Stereotype-Based Recommenders

In this module, you will learn several techniques for non- and lightly-personalized recommendations, including how to use meaningful summary statistics, how to compute product association recommendations, and how to explore using demographics as a means for light personalization. There is both an assignment (trying out these techniques in a spreadsheet) and a quiz to test your comprehension. ...
7件のビデオ (合計111分), 5 readings, 9 quizzes
7件のビデオ
Summary Statistics I16 分
Summary Statistics II22 分
Demographics and Related Approaches13 分
Product Association Recommenders19 分
Assignment #1 Intro Video14 分
Assignment Intro: Programming Non-Personalized Recommenders17 分
5件の学習用教材
External Readings on Ranking and Scoring10 分
Assignment 1 Instructions: Non-Personalized and Stereotype-Based Recommenders10 分
Assignment Intro: Programming Non-Personalized Recommenders10 分
LensKit Resources10 分
Rating Data Information10 分
8の練習問題
Assignment #1: Response #1: Top Movies by Mean Rating10 分
Assignment #1: Response #2: Top Movies by Count10 分
Assignment #1: Response #3: Top Movies by Percent Liking10 分
Assignment #1: Response #4: Association with Toy Story10 分
Assignment #1: Response #5: Correlation with Toy Story10 分
Assignment #1: Response #6: Male-Female Differences in Average Rating10 分
Assignment #1: Response #7: Male-Female differences in Liking8 分
Non-Personalized Recommenders20 分
3
3時間で修了

Content-Based Filtering -- Part I

The next topic in this course is content-based filtering, a technique for personalization based on building a profile of personal interests. Divided over two weeks, you will learn and practice the basic techniques for content-based filtering and then explore a variety of advanced interfaces and content-based computational techniques being used in recommender systems. ...
8件のビデオ (合計156分)
8件のビデオ
TFIDF and Content Filtering24 分
Content-Based Filtering: Deeper Dive26 分
Entree Style Recommenders -- Robin Burke Interview13 分
Case-Based Reasoning -- Interview with Barry Smyth13 分
Dialog-Based Recommenders -- Interview with Pearl Pu21 分
Search, Recommendation, and Target Audiences -- Interview with Sole Pera11 分
Beyond TFIDF -- Interview with Pasquale Lops21 分
4
6時間で修了

Content-Based Filtering -- Part II

The assessments for content-based filtering include an assignment where you compute three types of profile and prediction using a spreadsheet and a quiz on the topics covered. The assignment is in three parts -- a written assignment, a video intro, and a "quiz" where you provide answers from your work to be automatically graded....
2件のビデオ (合計26分), 3 readings, 3 quizzes
2件のビデオ
Honors: Intro to programming assignment10 分
3件の学習用教材
Content-Based Recommenders Spreadsheet Assignment (aka Assignment #2)20 分
Tools for Content-Based Filtering10 分
CBF Programming Intro10 分
2の練習問題
Assignment #2 Answer Form20 分
Content-Based Filtering20 分
1時間で修了

Course Wrap-up

We close this course with a set of mathematical notation that will be helpful as we move forward into a wider range of recommender systems (in later courses in this specialization). ...
2件のビデオ (合計45分), 1 reading
2件のビデオ
Psychology of Preference & Rating -- Interview with Martijn Willemsen31 分
1件の学習用教材
Related Readings10 分
4.5
76件のレビューChevron Right

75%

コース終了後に新しいキャリアをスタートした

50%

コースが具体的なキャリアアップにつながった

14%

昇給や昇進につながった

人気のレビュー

by BSFeb 13th 2019

One of the best courses I have taken on Coursera. Choosing Java for the lab exercises makes them inaccessible for many data scientists. Consider providing a Python version.

by DPDec 8th 2017

Nice introduction to recommender systems for those who have never heard about it before. No complex mathematical formula (which can also be seen by some as a downside).

講師

Avatar

Joseph A Konstan

Distinguished McKnight Professor and Distinguished University Teaching Professor
Computer Science and Engineering
Avatar

Michael D. Ekstrand

Assistant Professor
Dept. of Computer Science, Boise State University

ミネソタ大学(University of Minnesota)について

The University of Minnesota is among the largest public research universities in the country, offering undergraduate, graduate, and professional students a multitude of opportunities for study and research. Located at the heart of one of the nation’s most vibrant, diverse metropolitan communities, students on the campuses in Minneapolis and St. Paul benefit from extensive partnerships with world-renowned health centers, international corporations, government agencies, and arts, nonprofit, and public service organizations....

レコメンダシステムの専門講座について

This Specialization covers all the fundamental techniques in recommender systems, from non-personalized and project-association recommenders through content-based and collaborative techniques. Designed to serve both the data mining expert and the data literate marketing professional, the courses offer interactive, spreadsheet-based exercises to master different algorithms along with an honors track where learners can go into greater depth using the LensKit open source toolkit. A Capstone Project brings together the course material with a realistic recommender design and analysis project....
レコメンダシステム

よくある質問

  • 修了証に登録すると、すべてのビデオ、テスト、およびプログラミング課題(該当する場合)にアクセスできます。ピアレビュー課題は、セッションが開始してからのみ、提出およびレビューできます。購入せずにコースを検討することを選択する場合、特定の課題にアクセスすることはできません。

  • コースに登録する際、専門講座のすべてのコースにアクセスできます。コースの完了時には修了証を取得できます。電子修了証が成果のページに追加され、そこから修了証を印刷したり、LinkedInのプロフィールに追加したりできます。コースの内容の閲覧のみを希望する場合は、無料でコースを聴講できます。

  • This specialization is a substantial extension and update of our original introductory course. It involves about 60% new and extended lectures and mostly new assignments and assessments. This course specifically has added material on stereotyped and demographic recommenders and on advanced techniques in content-based recommendation.

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。