Chevron Left
Big Data Analysis with Scala and Spark に戻る

スイス連邦工科大学ローザンヌ校(École Polytechnique Fédérale de Lausanne) による Big Data Analysis with Scala and Spark の受講者のレビューおよびフィードバック

4.7
2,540件の評価
520件のレビュー

コースについて

Manipulating big data distributed over a cluster using functional concepts is rampant in industry, and is arguably one of the first widespread industrial uses of functional ideas. This is evidenced by the popularity of MapReduce and Hadoop, and most recently Apache Spark, a fast, in-memory distributed collections framework written in Scala. In this course, we'll see how the data parallel paradigm can be extended to the distributed case, using Spark throughout. We'll cover Spark's programming model in detail, being careful to understand how and when it differs from familiar programming models, like shared-memory parallel collections or sequential Scala collections. Through hands-on examples in Spark and Scala, we'll learn when important issues related to distribution like latency and network communication should be considered and how they can be addressed effectively for improved performance. Learning Outcomes. By the end of this course you will be able to: - read data from persistent storage and load it into Apache Spark, - manipulate data with Spark and Scala, - express algorithms for data analysis in a functional style, - recognize how to avoid shuffles and recomputation in Spark, Recommended background: You should have at least one year programming experience. Proficiency with Java or C# is ideal, but experience with other languages such as C/C++, Python, Javascript or Ruby is also sufficient. You should have some familiarity using the command line. This course is intended to be taken after Parallel Programming: https://www.coursera.org/learn/parprog1....

人気のレビュー

CC

2017年6月7日

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

BP

2019年11月28日

Excellent overview of Spark, including exercises that solidify what you learn during the lectures. The development environment setup tutorials were also very helpful, as I had not yet worked with sbt.

フィルター:

Big Data Analysis with Scala and Spark: 301 - 325 / 505 レビュー

by Z

2017年3月27日

Very fun and informative!

by Canh S L

2017年3月25日

really good, informative

by vijay k k

2018年5月7日

Good course to learn it

by Hermann H

2017年7月19日

Great material !!! ;-)

by vikas s

2017年7月28日

awesome course content

by Deleted A

2017年6月26日

Great course. Thanks!

by Marija N

2019年7月5日

Absolutely fantastic!

by Subodh C

2019年3月30日

Thanks Prof. Miller !

by Nebiyou T

2017年12月26日

Very good instructor!

by Dinesh A G

2017年4月2日

good course on spark.

by jose r

2017年11月24日

Great Course, thanks

by Konstantin

2017年5月29日

Nice course, thanks!

by abhinav

2017年12月10日

Wonderful course!!!

by Luis M M S

2017年6月21日

I loved this course

by prashant b

2017年4月7日

very nicely taught

by Manish M D

2019年9月16日

Excellent course.

by DAVID J A

2018年3月1日

Simply brilliant.

by Rajesh G

2017年12月2日

Excellent course!

by Georgi Y

2017年7月7日

Excellent course!

by Taneli L

2017年4月10日

Excellent course.

by Tal G

2017年4月8日

Excellent teacher

by Fang Z

2017年4月5日

Very good course.

by Prashant P

2017年5月12日

Awesome course !

by Jędrzej B

2020年5月22日

Nice and clear.

by Camila G W

2018年11月16日

Amazing course!