Cervical Cancer Risk Prediction Using Machine Learning

4.6

11件の評価

提供:
このガイド付きプロジェクトでは、次のことを行います。

U​nderstand the theory and intuition behind XGBoost Algorithm

P​reform exploratory data analysis

Develop, train and evaluate XG-Boost classifier model using Scikit-Learn

2 hours
初級
ダウンロード不要
分割画面ビデオ
英語
デスクトップのみ

In this hands-on project, we will build and train an XG-Boost classifier to predict whether a person has a risk of having cervical cancer. Cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. Data has been obtained from 858 patients and include features such as number of pregnancies, smoking habits, Sexually Transmitted Disease (STD), demographics, and historic medical records.

あなたが開発するスキル

  • Data Analysis

  • Machine Learning

  • classification

  • Artificial Intelligence(AI)

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Task #1: Understand the Problem Statement and Business Case

  2. Task #2: Import Libraries and Datasets

  3. Task #3: Perform Exploratory Data Analysis

  4. Task #4: Perform Data Visualization

  5. Task #5: Prepare the data before Model Training

  6. Task #6: Understand the Theory and Intuition Behind XG-Boost

  7. Task #7: Train and Evaluate XG-Boost Algorithm

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

ガイド付きプロジェクトを購入することによって、ガイド付きプロジェクトを完了するために必要なものすべてが得られます。これには、開始する必要のあるファイルとソフトウェアを含むWebブラウザを介したクラウドデスクトップワークスペースへのアクセスの他、専門家によるステップバイステップのビデオ講座が含まれます。

ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。

ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。

ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。

ガイド付きプロジェクトは払い戻しの対象外です。すべての返金ポリシーを表示する

ガイド付きプロジェクトには学費援助が利用できません。

ガイド付きプロジェクトでは監査を使用できません。

ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。

はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。

分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。