Image Data Augmentation with Keras

4.6
422件の評価
提供:
Coursera Project Network
8,654人がすでに登録済みです
このガイド付きプロジェクトでは、次のことを行います。

Image Data Augmentation with Keras

Using Image Data Generator with a Keras Model

Clock1.5 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 1.5-hour long project-based course, you will learn how to apply image data augmentation in Keras. We are going to focus on using the ImageDataGenerator class from Keras’ image preprocessing package, and will take a look at a variety of options available in this class for data augmentation and data normalization. Since this is a practical, project-based course, you will need to prior experience with Python programming, convolutional neural networks, and Keras with a TensorFlow backend. Data augmentation is a technique used to create more examples, artificially, from an existing dataset. This is useful if your dataset is small and you want to increase the number of examples. Data augmentation can often solve over-fitting so that your model generalizes well after training. For images, a variety of augmentation can be applied to increase the number of examples. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

Deep LearningConvolutional Neural NetworkMachine Learningimage augmentationkeras

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Introduction and Importing Libraries

  2. Rotation

  3. Width and Height Shifts

  4. Brightness

  5. Shear Transformation

  6. Zoom

  7. Channel Shift

  8. Horizontal and Vertical Flips

  9. Data Normalization

  10. Rescale and Preprocessing Function

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

IMAGE DATA AUGMENTATION WITH KERAS からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。