Deep Learning with PyTorch : Image Segmentation

提供:
Coursera Project Network
このガイド付きプロジェクトでは、次のことを行います。

Use U-Net architecture for segmentation

Create train function and evaluator for training loop

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 2-hour project-based course, you will be able to : - Understand the Segmentation Dataset and you will write a custom dataset class for Image-mask dataset. Additionally, you will apply segmentation augmentation to augment images as well as its masks. For image-mask augmentation you will use albumentation library. You will plot the image-Mask pair. - Load a pretrained state of the art convolutional neural network for segmentation problem(for e.g, Unet) using segmentation model pytorch library. - Create train function and evaluator function which will helpful to write training loop. Moreover, you will use training loop to train the model.

あなたが開発するスキル

  • Mathematical Optimization
  • Convolutional Neural Network
  • Autoencoder
  • Python Programming
  • pytorch

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Set up colab runtime environment

  2. Setup Configurations

  3. Augmentations

  4. Custom Dataset

  5. Load Dataset into batches

  6. Create Segmentation Model

  7. Create Train and Eval Function

  8. Train Model

  9. Inference

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

よくある質問

よくある質問

さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。