Deep Learning with PyTorch : Image Segmentation
44件の評価

3,578人がすでに登録済みです
Use U-Net architecture for segmentation
Create train function and evaluator for training loop
この実践的な経験を面接でアピールする
44件の評価
3,578人がすでに登録済みです
Use U-Net architecture for segmentation
Create train function and evaluator for training loop
この実践的な経験を面接でアピールする
In this 2-hour project-based course, you will be able to : - Understand the Segmentation Dataset and you will write a custom dataset class for Image-mask dataset. Additionally, you will apply segmentation augmentation to augment images as well as its masks. For image-mask augmentation you will use albumentation library. You will plot the image-Mask pair. - Load a pretrained state of the art convolutional neural network for segmentation problem(for e.g, Unet) using segmentation model pytorch library. - Create train function and evaluator function which will helpful to write training loop. Moreover, you will use training loop to train the model.
Prior programming experience in Python and basic pytorch. Theoretical knowledge of Convolutional Neural Network and Training process (Optimization)
Mathematical Optimization
Convolutional Neural Network
Autoencoder
Python Programming
pytorch
ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。
Set up colab runtime environment
Setup Configurations
Augmentations
Custom Dataset
Load Dataset into batches
Create Segmentation Model
Create Train and Eval Function
Train Model
Inference
ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です
分割画面のビデオで、講師が手順ごとにガイドします
YYにより
2022年2月20日Great instructor and very practical hands-on approach. I would prefer more explanation on other encoder and weight presets as that will be important for transferring the knowledge learned here!
ワークスペースにはラップトップまたはデスクトップコンピューターに適したサイズのクラウドデスクトップが含まれているため、モバイル機器ではガイド付きプロジェクトを使用できません。
ガイド付きプロジェクトの講師は、プロジェクトのスキル、ツール、またはその分野での経験があり、知識を共有して世界中の何百万人もの受講生に影響を与えるたことに情熱を持つ専門家です。
ガイド付きプロジェクトから作成したファイルをダウンロードして保持できます。そのためには、クラウドデスクトップにアクセスしているときに「ファイルブラウザ」機能を使用できます。
ページの上部で、このガイド付きプロジェクトの経験レベルを押して、知識の前提条件を表示できます。ガイド付きプロジェクトのすべてのレベルで、インストラクターがステップバイステップでご案内します。
はい。ガイド付きプロジェクトを完了するために必要なものはすべて、ブラウザで利用可能なクラウドデスクトップで利用できます。
分割画面環境でタスクをブラウザで直接完了することで学習できます。画面の左側で、ワークスペースでタスクを完了します。画面の右側で、講師がプロジェクトをステップごとにガイドします。
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。