Linear Regression with Python

4.6
384件の評価
提供:
Coursera Project Network
9,008人がすでに登録済みです
このガイド付きプロジェクトでは、次のことを行います。

Create a linear model, and implement gradient descent.

Train the linear model to fit given data using gradient descent.

Clock2 hours
Intermediate中級
Cloudダウンロード不要
Video分割画面ビデオ
Comment Dots英語
Laptopデスクトップのみ

In this 2-hour long project-based course, you will learn how to implement Linear Regression using Python and Numpy. Linear Regression is an important, fundamental concept if you want break into Machine Learning and Deep Learning. Even though popular machine learning frameworks have implementations of linear regression available, it's still a great idea to learn to implement it on your own to understand the mechanics of optimization algorithm, and the training process. Since this is a practical, project-based course, you will need to have a theoretical understanding of linear regression, and gradient descent. We will focus on the practical aspect of implementing linear regression with gradient descent, but not on the theoretical aspect. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

あなたが開発するスキル

Data ScienceDeep LearningMachine LearningPython ProgrammingLinear Regression

ステップバイステップで学習します

ワークエリアを使用した分割画面で再生するビデオでは、講師がこれらの手順を説明します。

  1. Introduction

  2. Dataset

  3. Initialize Parameters

  4. Forward Pass

  5. Compute Loss

  6. Backward Pass

  7. Update Parameters

  8. Training Loop

  9. Predictions

  10. Additional Example

ガイド付きプロジェクトの仕組み

ワークスペースは、ブラウザに完全にロードされたクラウドデスクトップですので、ダウンロードは不要です

分割画面のビデオで、講師が手順ごとにガイドします

レビュー

LINEAR REGRESSION WITH PYTHON からの人気レビュー

すべてのレビューを見る

よくある質問

よくある質問

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。