Chevron Left
Optimize TensorFlow Models For Deployment with TensorRT に戻る

Coursera Project Network による Optimize TensorFlow Models For Deployment with TensorRT の受講者のレビューおよびフィードバック

4.6
56件の評価

コースについて

This is a hands-on, guided project on optimizing your TensorFlow models for inference with NVIDIA's TensorRT. By the end of this 1.5 hour long project, you will be able to optimize Tensorflow models using the TensorFlow integration of NVIDIA's TensorRT (TF-TRT), use TF-TRT to optimize several deep learning models at FP32, FP16, and INT8 precision, and observe how tuning TF-TRT parameters affects performance and inference throughput. Prerequisites: In order to successfully complete this project, you should be competent in Python programming, understand deep learning and what inference is, and have experience building deep learning models in TensorFlow and its Keras API. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

人気のレビュー

LS

2021年6月3日

Great workshop, all the concepts were very well explained.

AA

2022年3月14日

The first to introduce such a rare and important topic.

フィルター:

Optimize TensorFlow Models For Deployment with TensorRT: 1 - 10 / 10 レビュー

by Awais A

2021年3月28日

by Jorge G

2021年2月25日

by Luis S

2021年6月4日

by Abdelrahman A

2022年3月15日

by Fabian I M N

2021年4月20日

by Nusrat I

2021年4月16日

by Chandra S

2020年12月13日

by ERNAZAROV B T O

2020年9月10日

by Vignesh R

2021年7月8日

by Yilber R

2020年10月1日