この専門講座について
20,530 最近の表示

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

初級レベル

約1か月で修了

推奨12時間/週

英語

字幕:英語, 韓国語, ドイツ語, アラビア語

習得するスキル

Data AnalysisPython ProgrammingData Visualization (DataViz)Matplotlib

100%オンラインコース

自分のスケジュールですぐに学習を始めてください。

フレキシブルなスケジュール

柔軟性のある期限の設定および維持

初級レベル

約1か月で修了

推奨12時間/週

英語

字幕:英語, 韓国語, ドイツ語, アラビア語

専門講座のしくみ

コースを受講しましょう。

Coursera(コーセラ)の専門講座は、一連のコース群であり、技術を身に付ける手助けとなります。開始するには、専門講座に直接登録するか、コースを確認して受講したいコースを選択してください。専門講座の一部であるコースにサブスクライブすると、自動的にすべての専門講座にサブスクライブされます。1つのコースを修了するだけでも結構です。いつでも、学習を一時停止したり、サブスクリプションを終了することができます。コースの登録状況や進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

実践型プロジェクト

すべての専門講座には、実践型プロジェクトが含まれています。専門講座を完了して修了証を獲得するには、成功裏にプロジェクトを終了させる必要があります。専門講座に実践型プロジェクトに関する別のコースが含まれている場合、専門講座を開始するには、それら他のコースをそれぞれ終了させる必要があります。

修了証を取得

すべてのコースを終了し、実践型プロジェクトを完了すると、修了証を獲得します。この修了証は、今後採用企業やあなたの職業ネットワークと共有できます。

how it works

この専門講座には4コースあります。

コース1

Python for Data Science and AI

4.6
6,165件の評価
833件のレビュー

This introduction to Python will kickstart your learning of Python for data science, as well as programming in general. This beginner-friendly Python course will take you from zero to programming in Python in a matter of hours. Module 1 - Python Basics o Your first program o Types o Expressions and Variables o String Operations Module 2 - Python Data Structures o Lists and Tuples o Sets o Dictionaries Module 3 - Python Programming Fundamentals o Conditions and Branching o Loops o Functions o Objects and Classes Module 4 - Working with Data in Python o Reading files with open o Writing files with open o Loading data with Pandas o Numpy Finally, you will create a project to test your skills. LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate.

...
コース2

Data Analysis with Python

4.6
4,251件の評価
548件のレビュー

Learn how to analyze data using Python. This course will take you from the basics of Python to exploring many different types of data. You will learn how to prepare data for analysis, perform simple statistical analysis, create meaningful data visualizations, predict future trends from data, and more! Topics covered: 1) Importing Datasets 2) Cleaning the Data 3) Data frame manipulation 4) Summarizing the Data 5) Building machine learning Regression models 6) Building data pipelines Data Analysis with Python will be delivered through lecture, lab, and assignments. It includes following parts: Data Analysis libraries: will learn to use Pandas, Numpy and Scipy libraries to work with a sample dataset. We will introduce you to pandas, an open-source library, and we will use it to load, manipulate, analyze, and visualize cool datasets. Then we will introduce you to another open-source library, scikit-learn, and we will use some of its machine learning algorithms to build smart models and make cool predictions. If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge. LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate.

...
コース3

Data Visualization with Python

4.6
2,951件の評価
321件のレビュー

"A picture is worth a thousand words". We are all familiar with this expression. It especially applies when trying to explain the insight obtained from the analysis of increasingly large datasets. Data visualization plays an essential role in the representation of both small and large-scale data. One of the key skills of a data scientist is the ability to tell a compelling story, visualizing data and findings in an approachable and stimulating way. Learning how to leverage a software tool to visualize data will also enable you to extract information, better understand the data, and make more effective decisions. The main goal of this Data Visualization with Python course is to teach you how to take data that at first glance has little meaning and present that data in a form that makes sense to people. Various techniques have been developed for presenting data visually but in this course, we will be using several data visualization libraries in Python, namely Matplotlib, Seaborn, and Folium. LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate.

...
コース4

Applied Data Science Capstone

4.7
1,378件の評価
122件のレビュー

This capstone project course will give you a taste of what data scientists go through in real life when working with data. You will learn about location data and different location data providers, such as Foursquare. You will learn how to make RESTful API calls to the Foursquare API to retrieve data about venues in different neighborhoods around the world. You will also learn how to be creative in situations where data are not readily available by scraping web data and parsing HTML code. You will utilize Python and its pandas library to manipulate data, which will help you refine your skills for exploring and analyzing data. Finally, you will be required to use the Folium library to great maps of geospatial data and to communicate your results and findings. If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge upon successful completion of the course. LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate.

...

講師

Avatar

Joseph Santarcangelo

Ph.D., Data Scientist at IBM
IBM Developer Skills Network
Avatar

Alex Aklson

Ph.D., Data Scientist
IBM Developer Skills Network

IBMについて

IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame....

よくある質問

  • はい。まず始めに興味のあるコースカードをクリックして登録します。コースに登録して修了することによって、共有できる修了証を取得するか、無料でコースを聴講してコースの教材を確認することができます。専門講座の一部であるコースにサブスクライブすると、専門講座全体に自動的にサブスクライブされます。進捗を追跡するには、受講生のダッシュボードにアクセスしてください。

  • このコースは完全にオンラインで提供されているため、実際に教室に出席する必要はありません。Webまたはモバイル機器からいつでもどこからでも講義、学習用教材、課題にアクセスできます。

  • The specialization consists of 4 courses. Suggested time to complete each course is 3-4 weeks. If you follow recommended timelines it would take 3 to 4 months to complete the entire specialization.

  • No prior experience in data science or programming is required. However it is recommended that you have some foundational knowledge about data science which can be developed by taking the the Introduction to Applied Data Science specialization by IBM.

  • It is strongly recommended that you take the Python for Data Science course first. Then you can take either the Visualization or the Data Science course - whichever you prefer. And end with the Captsone course.

  • No

  • You will be able to learn practical Python skills, and apply them to interesting Data Visualization and Data Analysis problems.

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。