Chevron Left
Big Data: procesamiento y análisis に戻る

バルセロナ自治大学(Universitat Autònoma de Barcelona) による Big Data: procesamiento y análisis の受講者のレビューおよびフィードバック

4.2
233件の評価

コースについて

El presente curso tiene como objetivo presentar los métodos y técnicas básicos para el procesamiento y análisis de datos en el contexto de Big Data. No prentende ser un curso exhaustivo sobre Machine Learning ni sobre métodos Estadísticos, simplemente se pretenden mostrar las características principales de estas técnicas para que el alumno pueda tener una visión general de las opciones que ofrece el análisis de datos para poder explorar, confirmar indicios y en definitiva, extraer conclusiones. El curso está dirigido a estudiantes y profesionales que deseen aproximarse al procesamiento y análisis de datos en Big Data. Aunque no es un requisito indispensable tener experiencia en análisis de datos o en entornos Big Data, el curso puede resultar especialmente interesante a estudiantes con ciertos conocimientos de análisis de datos que deseen introducirse en el entorno Big Data, por otro lado, también resultará interesante a aquellos estudiantes con cierta experiencia en entornos Big Data que deseen adquirir una mayor visión analítica. En este sentido el curso pretende ofrecer recursos realistas en el contexto Big Data y por este motivo se trabajará des de una máquina virtual con la aplicación Jupyter como enlace para desarrollar los modelos y técnicas con PySpark. El curso está dividido en 4 módulos más o menos independientes aunque se recomienda realizarlos de forma secuencial. En el Módulo 1 se presentan los diferentes problemas y técnicas más habitules para analizar datos desde una perspectiva general. También se introduce el caso de estudio y las herramientas de trabajo que se emplearán. El resto de módulo está dedicado a la tarea de Exploración y Pre-Proceso de los datos, incluyendo consultas, tareas de gestión, resúmenes numéricos y gráficos. Los siguientes módulos se focalizan en las técnicas de análisis. El Módulo 2 se centra en técnicas de modelización básicas, en particular regresión y regresión logística. Además de repasar las etapas de calibración del modelo, también se incluyen las etapas de validación y simplificación. El módulo 3 está plenamente dedicado a la técnica de Árboles de Regresión y Clasificación. También se incluyen los bosques aleatorios. El módulo final contiene la técnica de Redes Neuronales para clasificación y también una introducción a las técnicas No Supervisadas, en particular, reducción de dimensión a través del análisis de componentes principales y la clasificación automática a través del análisis de clústers....

人気のレビュー

WZ

2020年8月26日

Definitivamente el curso más difícil de la especialización hasta ahora. Creo que debería haber más participación de moderadores o mentores en los foros para que ayuden a los estudiantes.

AA

2020年8月29日

Me ayudó mucho a introducirme conceptos que son nuevos para mi, entender un poco mas del procesamiento de datos y comprender de cierta forma el trabajo de un científico de datos.

フィルター:

Big Data: procesamiento y análisis: 76 - 90 / 90 レビュー

by pablo b

2019年10月30日

by Ricardo T O

2020年7月23日

by Salvador E F G

2019年10月5日

by Deleted A

2020年9月1日

by David N C G

2020年9月10日

by Daniel G R

2020年9月24日

by Jans E

2020年8月8日

by JOSE L L G

2020年7月26日

by YEISSON D T J

2020年11月20日

by Fermin H

2020年10月24日

by Oscar O P

2020年8月7日

by Pablo V M

2020年11月7日

by Carlos L

2020年8月10日

by Ivan L G

2020年8月1日

by Alejandro B V

2020年11月14日