このコースについて
19,547 最近の表示

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

中級レベル

You should know the basics of types of variables, distributions, hypothesis testing, p values and confidence intervals using R, though I'll recap.

約11時間で修了

推奨:4 weeks of study 3-5 hours per week ...

英語

字幕:英語

学習内容

  • Check

    Describe when a linear regression model is appropriate to use

  • Check

    Read in and check a data set's variables using the software R prior to undertaking a model analysis

  • Check

    Fit a multiple linear regression model with interactions, check model assumptions and interpret the output

習得するスキル

Correlation And DependenceLinear RegressionR Programming

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

中級レベル

You should know the basics of types of variables, distributions, hypothesis testing, p values and confidence intervals using R, though I'll recap.

約11時間で修了

推奨:4 weeks of study 3-5 hours per week ...

英語

字幕:英語

シラバス - 本コースの学習内容

1
5時間で修了

INTRODUCTION TO LINEAR REGRESSION

Before jumping ahead to run a regression model, you need to understand a related concept: correlation. This week you’ll learn what it means and how to generate Pearson’s and Spearman’s correlation coefficients in R to assess the strength of the association between a risk factor or predictor and the patient outcome. Then you’ll be introduced to linear regression and the concept of model assumptions, a key idea underpinning so much of statistical analysis.

...
7件のビデオ (合計34分), 9 readings, 5 quizzes
7件のビデオ
Pearson’s Correlation Part I3 分
Pearson’s Correlation Part II6 分
Intro to Linear Regression: Part I4 分
Intro to Linear Regression: Part II3 分
Linear Regression and Model Assumptions: Part I6 分
Linear Regression and Model Assumptions: Part II5 分
9件の学習用教材
About Imperial College London & the Team10 分
How to be successful in this course10 分
Grading policy10 分
Data set and Glossary10 分
Additional Reading10 分
Reading: Linear Regression Models: Behind the Headlines5 分
Linear Regression Models: Behind the Headlines: Written Summary20 分
Warnings and precautions for Pearson's correlation20 分
Introduction to Spearman correlation15 分
5の練習問題
Linear Regression Models: Behind the Headlines10 分
Correlations30 分
Spearman Correlation20 分
Practice Quiz on Linear Regression20 分
End of Week Quiz20 分
2
4時間で修了

Linear Regression in R

You’ll be introduced to the COPD data set that you’ll use throughout the course and will run basic descriptive analyses. You’ll also practise running correlations in R. Next, you’ll see how to run a linear regression model, firstly with one and then with several predictors, and examine whether model assumptions hold.

...
3件のビデオ (合計11分), 8 readings, 2 quizzes
3件のビデオ
Fitting the linear regression3 分
Multiple Regression4 分
8件の学習用教材
Recap on installing R10 分
Assessing distributions and calculating the correlation coefficient in R 10 分
Feedback10 分
How to fit a regression model in R10 分
Feedback15 分
Fitting the Multiple Regression in R30 分
Feedback10 分
Summarising correlation and linear regression30 分
2の練習問題
Linear Regression20 分
End of Week Quiz20 分
3
4時間で修了

Multiple Regression and Interaction

Now you’ll see how to extend the linear regression model to include binary and categorical variables as predictors and learn how to check the correlation between predictors. Then you’ll see how predictors can interact with each other and how to incorporate the necessary interaction terms into the model and interpret them. Different kinds of interactions exist and can be challenging to interpret, so we will take it slowly with worked examples and opportunities to practise.

...
4件のビデオ (合計17分), 9 readings, 2 quizzes
4件のビデオ
Introduction to Key Dataset Features: Part II2 分
Interactions between binary variables4 分
Interactions between binary and continuous variables5 分
9件の学習用教材
How to assess key features of a dataset in R20 分
How to check your data in R10 分
Good Practice Steps20 分
Practice with R: Run a Good Practice Analysis30 分
Practice with R: Run Multiple Regression30 分
Feedback10 分
Practice with R: Running and interpreting a multiple regression30 分
Feedback15 分
Additional Reading10 分
2の練習問題
Fitting and interpreting model results20 分
Interpretation of interactions20 分
4
3時間で修了

MODEL BUILDING

The last part of the course looks at how to build a regression model when you have a choice of what predictors to include in it. It describes commonly used automated procedures for model building and shows you why they are so problematic. Lastly, you’ll have the chance to fit some models using a more defensible and robust approach.

...
5件のビデオ (合計16分), 7 readings, 2 quizzes
5件のビデオ
Variable Selection3 分
Developing a Model Building Strategy6 分
Summary of developing a Model Building Strategy56
Summary of Course1 分
7件の学習用教材
Feedback10 分
Further details of limitations of stepwise10 分
How many predictors can I include?10 分
Practice with R: Developing your model
Practice with R: Fitting the final model10 分
Feedback on developing the model10 分
Final R Code20 分
2の練習問題
Problems with automated approaches20 分
End of Course Quiz20 分
4.8
7件のレビューChevron Right

50%

コースが具体的なキャリアアップにつながった

Linear Regression in R for Public Health からの人気レビュー

by VDJun 21st 2019

Perhaps, the best linear regression course available online! Great job!

by RHMay 22nd 2019

Amazing course, it has been great revision for me with OLS

講師

Avatar

Alex Bottle

Reader in Medical Statistics
School of Public Health
Avatar

Victoria Cornelius

Senior Lecturer in Medical Statistics and Clinical Trials

修士号の取得を目指しましょう

この コース は インペリアル・カレッジ・ロンドン(Imperial College London) の100%オンラインの Global Master of Public Health の一部です。 プログラムのすべてで認定されれば、それらのコースが学位学習に加算されます。

インペリアル・カレッジ・ロンドン(Imperial College London)について

Imperial College London is a world top ten university with an international reputation for excellence in science, engineering, medicine and business. located in the heart of London. Imperial is a multidisciplinary space for education, research, translation and commercialisation, harnessing science and innovation to tackle global challenges. Imperial students benefit from a world-leading, inclusive educational experience, rooted in the College’s world-leading research. Our online courses are designed to promote interactivity, learning and the development of core skills, through the use of cutting-edge digital technology....

Statistical Analysis with R for Public Healthの専門講座について

Statistics are everywhere. The probability it will rain today. Trends over time in unemployment rates. The odds that India will win the next cricket world cup. In sports like football, they started out as a bit of fun but have grown into big business. Statistical analysis also has a key role in medicine, not least in the broad and core discipline of public health. In this specialisation, you’ll take a peek at what medical research is and how – and indeed why – you turn a vague notion into a scientifically testable hypothesis. You’ll learn about key statistical concepts like sampling, uncertainty, variation, missing values and distributions. Then you’ll get your hands dirty with analysing data sets covering some big public health challenges – fruit and vegetable consumption and cancer, risk factors for diabetes, and predictors of death following heart failure hospitalisation – using R, one of the most widely used and versatile free software packages around. This specialisation consists of four courses – statistical thinking, linear regression, logistic regression and survival analysis – and is part of our upcoming Global Master in Public Health degree, which is due to start in September 2019. The specialisation can be taken independently of the GMPH and will assume no knowledge of statistics or R software. You just need an interest in medical matters and quantitative data....
Statistical Analysis with R for Public Health

よくある質問

  • 修了証に登録すると、すべてのビデオ、テスト、およびプログラミング課題(該当する場合)にアクセスできます。ピアレビュー課題は、セッションが開始してからのみ、提出およびレビューできます。購入せずにコースを検討することを選択する場合、特定の課題にアクセスすることはできません。

  • コースに登録する際、専門講座のすべてのコースにアクセスできます。コースの完了時には修了証を取得できます。電子修了証が成果のページに追加され、そこから修了証を印刷したり、LinkedInのプロフィールに追加したりできます。コースの内容の閲覧のみを希望する場合は、無料でコースを聴講できます。

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。