Chevron Left
Mathematics for Machine Learning: PCA に戻る

インペリアル・カレッジ・ロンドン(Imperial College London) による Mathematics for Machine Learning: PCA の受講者のレビューおよびフィードバック

4.0
2,843件の評価

コースについて

This intermediate-level course introduces the mathematical foundations to derive Principal Component Analysis (PCA), a fundamental dimensionality reduction technique. We'll cover some basic statistics of data sets, such as mean values and variances, we'll compute distances and angles between vectors using inner products and derive orthogonal projections of data onto lower-dimensional subspaces. Using all these tools, we'll then derive PCA as a method that minimizes the average squared reconstruction error between data points and their reconstruction. At the end of this course, you'll be familiar with important mathematical concepts and you can implement PCA all by yourself. If you’re struggling, you'll find a set of jupyter notebooks that will allow you to explore properties of the techniques and walk you through what you need to do to get on track. If you are already an expert, this course may refresh some of your knowledge. The lectures, examples and exercises require: 1. Some ability of abstract thinking 2. Good background in linear algebra (e.g., matrix and vector algebra, linear independence, basis) 3. Basic background in multivariate calculus (e.g., partial derivatives, basic optimization) 4. Basic knowledge in python programming and numpy Disclaimer: This course is substantially more abstract and requires more programming than the other two courses of the specialization. However, this type of abstract thinking, algebraic manipulation and programming is necessary if you want to understand and develop machine learning algorithms....

人気のレビュー

WS

2021年7月6日

Now i feel confident about pursuing machine learning courses in the future as I have learned most of the mathematics which will be helpful in building the base for machine learning, data science.

JS

2018年7月16日

This is one hell of an inspiring course that demystified the difficult concepts and math behind PCA. Excellent instructors in imparting the these knowledge with easy-to-understand illustrations.

フィルター:

Mathematics for Machine Learning: PCA: 1 - 25 / 708 レビュー

by Hashaam S

2018年12月30日

by Maximilian W

2019年4月29日

by Eric P

2019年4月26日

by Christos M

2019年4月27日

by Ткаченко В Е

2019年3月24日

by Avirup G

2019年2月18日

by Alexandra S

2018年9月26日

by Bryan S

2019年2月19日

by Sreekar P

2018年10月23日

by Harshit D

2018年7月30日

by Brock I

2018年11月21日

by Guillermo A

2020年6月15日

by Rahul M

2019年6月29日

by Roy A

2020年9月23日

by Nimesh S

2020年6月19日

by João C L S

2019年5月2日

by Jong H S

2018年7月17日

by Martin B

2018年10月22日

by Oliverio J S J

2020年5月29日

by Christian R

2018年7月24日

by JICHEN W

2018年10月27日

by Jayant V

2018年5月1日

by José D

2018年10月31日

by SUSAN H M

2019年10月21日

by Tobias L

2020年9月10日