このコースについて

152,799 最近の表示

受講生の就業成果

34%

コース終了後に新しいキャリアをスタートした

37%

コースが具体的なキャリアアップにつながった

23%

昇給や昇進につながった
共有できる証明書
修了時に証明書を取得
100%オンライン
自分のスケジュールですぐに学習を始めてください。
柔軟性のある期限
スケジュールに従って期限をリセットします。
中級レベル
約29時間で修了
英語
字幕:英語, 韓国語

学習内容

  • Represent and manipulate networked data using the NetworkX library

  • Analyze the connectivity of a network

  • Measure the importance or centrality of a node in a network

  • Predict the evolution of networks over time

習得するスキル

Graph TheoryNetwork AnalysisPython ProgrammingSocial Network Analysis

受講生の就業成果

34%

コース終了後に新しいキャリアをスタートした

37%

コースが具体的なキャリアアップにつながった

23%

昇給や昇進につながった
共有できる証明書
修了時に証明書を取得
100%オンライン
自分のスケジュールですぐに学習を始めてください。
柔軟性のある期限
スケジュールに従って期限をリセットします。
中級レベル
約29時間で修了
英語
字幕:英語, 韓国語

提供:

ミシガン大学(University of Michigan) ロゴ

ミシガン大学(University of Michigan)

シラバス - 本コースの学習内容

コンテンツの評価Thumbs Up94%(1,959 件の評価)Info
1

1

7時間で修了

Why Study Networks and Basics on NetworkX

7時間で修了
5件のビデオ (合計48分), 3 readings, 2 quizzes
5件のビデオ
Network Definition and Vocabulary9 分
Node and Edge Attributes9 分
Bipartite Graphs12 分
TA Demonstration: Loading Graphs in NetworkX8 分
3件の学習用教材
Course Syllabus10 分
Help us learn more about you!10 分
Notice for Auditing Learners: Assignment Submission10 分
1の練習問題
Module 1 Quiz50 分
2

2

7時間で修了

Network Connectivity

7時間で修了
5件のビデオ (合計55分)
5件のビデオ
Distance Measures17 分
Connected Components9 分
Network Robustness10 分
TA Demonstration: Simple Network Visualizations in NetworkX6 分
1の練習問題
Module 2 Quiz50 分
3

3

6時間で修了

Influence Measures and Network Centralization

6時間で修了
6件のビデオ (合計70分)
6件のビデオ
Betweenness Centrality18 分
Basic Page Rank9 分
Scaled Page Rank8 分
Hubs and Authorities12 分
Centrality Examples8 分
1の練習問題
Module 3 Quiz50 分
4

4

9時間で修了

Network Evolution

9時間で修了
3件のビデオ (合計51分), 3 readings, 2 quizzes
3件のビデオ
Small World Networks19 分
Link Prediction18 分
3件の学習用教材
Power Laws and Rich-Get-Richer Phenomena (Optional)40 分
The Small-World Phenomenon (Optional)1 時間 20 分
Post-Course Survey10 分
1の練習問題
Module 4 Quiz50 分

レビュー

APPLIED SOCIAL NETWORK ANALYSIS IN PYTHON からの人気レビュー

すべてのレビューを見る

Python 応用データサイエンス専門講座について

The 5 courses in this University of Michigan specialization introduce learners to data science through the python programming language. This skills-based specialization is intended for learners who have a basic python or programming background, and want to apply statistical, machine learning, information visualization, text analysis, and social network analysis techniques through popular python toolkits such as pandas, matplotlib, scikit-learn, nltk, and networkx to gain insight into their data. Introduction to Data Science in Python (course 1), Applied Plotting, Charting & Data Representation in Python (course 2), and Applied Machine Learning in Python (course 3) should be taken in order and prior to any other course in the specialization. After completing those, courses 4 and 5 can be taken in any order. All 5 are required to earn a certificate....
Python 応用データサイエンス

よくある質問

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。