Chevron Left
Machine Learning Foundations: A Case Study Approach に戻る

ワシントン大学(University of Washington) による Machine Learning Foundations: A Case Study Approach の受講者のレビューおよびフィードバック

4.6
13,101件の評価

コースについて

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies. At the end of the first course you will have studied how to predict house prices based on house-level features, analyze sentiment from user reviews, retrieve documents of interest, recommend products, and search for images. Through hands-on practice with these use cases, you will be able to apply machine learning methods in a wide range of domains. This first course treats the machine learning method as a black box. Using this abstraction, you will focus on understanding tasks of interest, matching these tasks to machine learning tools, and assessing the quality of the output. In subsequent courses, you will delve into the components of this black box by examining models and algorithms. Together, these pieces form the machine learning pipeline, which you will use in developing intelligent applications. Learning Outcomes: By the end of this course, you will be able to: -Identify potential applications of machine learning in practice. -Describe the core differences in analyses enabled by regression, classification, and clustering. -Select the appropriate machine learning task for a potential application. -Apply regression, classification, clustering, retrieval, recommender systems, and deep learning. -Represent your data as features to serve as input to machine learning models. -Assess the model quality in terms of relevant error metrics for each task. -Utilize a dataset to fit a model to analyze new data. -Build an end-to-end application that uses machine learning at its core. -Implement these techniques in Python....

人気のレビュー

BL

2016年10月16日

Very good overview of ML. The GraphLab api wasn't that bad, and also it was very wise of the instructors to allow the use of other ML packages. Overall i enjoyed it very much and also leaned very much

PM

2019年8月18日

The course was well designed and delivered by all the trainers with the help of case study and great examples.

The forums and discussions were really useful and helpful while doing the assignments.

フィルター:

Machine Learning Foundations: A Case Study Approach: 326 - 350 / 3,049 レビュー

by Vikram V

2016年9月28日

by Caio L F

2018年5月24日

by Marcio R

2016年2月23日

by Hamed A

2022年7月17日

by Deleted A

2018年10月9日

by Tim C

2015年12月21日

by Farooq M K

2016年10月1日

by 赵天琪

2016年8月9日

by Salman M

2016年7月15日

by Deleted A

2016年2月27日

by TAMERA Y

2017年5月16日

by Simon A

2016年8月8日

by Mohammad M

2015年12月25日

by Gergő B P

2021年11月1日

by Gustavo K A

2016年1月2日

by Abhishek M

2016年8月9日

by Stefano T

2015年11月30日

by Samuel d Z

2017年6月17日

by Ghiath Z

2015年12月12日

by Govind R

2020年10月26日

by Kishlay K

2021年3月2日

by Rohan V

2019年2月13日

by Shouvik R

2016年11月27日

by Deepali S

2020年7月13日

by CARLOS O T G

2021年4月7日