Chevron Left
Machine Learning Foundations: A Case Study Approach に戻る

ワシントン大学(University of Washington) による Machine Learning Foundations: A Case Study Approach の受講者のレビューおよびフィードバック

4.6
13,102件の評価

コースについて

Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies. At the end of the first course you will have studied how to predict house prices based on house-level features, analyze sentiment from user reviews, retrieve documents of interest, recommend products, and search for images. Through hands-on practice with these use cases, you will be able to apply machine learning methods in a wide range of domains. This first course treats the machine learning method as a black box. Using this abstraction, you will focus on understanding tasks of interest, matching these tasks to machine learning tools, and assessing the quality of the output. In subsequent courses, you will delve into the components of this black box by examining models and algorithms. Together, these pieces form the machine learning pipeline, which you will use in developing intelligent applications. Learning Outcomes: By the end of this course, you will be able to: -Identify potential applications of machine learning in practice. -Describe the core differences in analyses enabled by regression, classification, and clustering. -Select the appropriate machine learning task for a potential application. -Apply regression, classification, clustering, retrieval, recommender systems, and deep learning. -Represent your data as features to serve as input to machine learning models. -Assess the model quality in terms of relevant error metrics for each task. -Utilize a dataset to fit a model to analyze new data. -Build an end-to-end application that uses machine learning at its core. -Implement these techniques in Python....

人気のレビュー

BL

2016年10月16日

Very good overview of ML. The GraphLab api wasn't that bad, and also it was very wise of the instructors to allow the use of other ML packages. Overall i enjoyed it very much and also leaned very much

PM

2019年8月18日

The course was well designed and delivered by all the trainers with the help of case study and great examples.

The forums and discussions were really useful and helpful while doing the assignments.

フィルター:

Machine Learning Foundations: A Case Study Approach: 351 - 375 / 3,049 レビュー

by Taylor N

2015年12月20日

by Leor A R

2021年2月13日

by Sumedh S M

2020年5月7日

by Abhinav U

2015年11月1日

by Jafed E G

2019年7月6日

by Wilmer S C

2017年7月10日

by piyush s

2015年11月1日

by Leonardo L

2020年8月1日

by Michael H

2016年7月21日

by Daniel V

2016年3月27日

by Andrew R

2016年1月19日

by Bernd D

2022年3月18日

by Anshumaan S

2022年2月1日

by Miguel R

2019年6月4日

by Ganesh K

2019年2月10日

by Thomas K R

2018年4月1日

by jose l v

2015年12月5日

by Deleted A

2016年9月16日

by Patrick N

2018年2月18日

by Adil A

2017年12月14日

by Gustavo S

2016年10月30日

by Varun S

2016年2月7日

by Sergey T

2016年1月3日

by Lu E

2017年10月15日

by Farrukh N A

2016年12月16日