This course introduces you to sampling and exploring data, as well as basic probability theory and Bayes' rule. You will examine various types of sampling methods, and discuss how such methods can impact the scope of inference. A variety of exploratory data analysis techniques will be covered, including numeric summary statistics and basic data visualization. You will be guided through installing and using R and RStudio (free statistical software), and will use this software for lab exercises and a final project. The concepts and techniques in this course will serve as building blocks for the inference and modeling courses in the Specialization.
提供:
このコースについて
習得するスキル
- Statistics
- R Programming
- Rstudio
- Exploratory Data Analysis
提供:

デューク大学(Duke University)
Duke University has about 13,000 undergraduate and graduate students and a world-class faculty helping to expand the frontiers of knowledge. The university has a strong commitment to applying knowledge in service to society, both near its North Carolina campus and around the world.
シラバス - 本コースの学習内容
About Introduction to Probability and Data
This course introduces you to sampling and exploring data, as well as basic probability theory. You will examine various types of sampling methods and discuss how such methods can impact the utility of a data analysis. The concepts in this module will serve as building blocks for our later courses.Each lesson comes with a set of learning objectives that will be covered in a series of short videos. Supplementary readings and practice problems will also be suggested from OpenIntro Statistics, 3rd Edition, https://leanpub.com/openintro-statistics/, (a free online introductory statistics textbook, that I co-authored). There will be weekly quizzes designed to assess your learning and mastery of the material covered that week in the videos. In addition, each week will also feature a lab assignment, in which you will use R to apply what you are learning to real data. There will also be a data analysis project designed to enable you to answer research questions of your own choosing. Since this is a Coursera course, you are welcome to participate as much or as little as you’d like, though I hope that you will begin by participating fully. One of the most rewarding aspects of a Coursera course is participation in forum discussions about the course materials. Please take advantage of other students' feedback and insight and contribute your own perspective where you see fit to do so. You can also check out the resource page (https://www.coursera.org/learn/probability-intro/resources/crMc4) listing useful resources for this course. Thank you for joining the Introduction to Probability and Data community! Say hello in the Discussion Forums. We are looking forward to your participation in the course.
Introduction to Data
Welcome to Introduction to Probability and Data! I hope you are just as excited about this course as I am! In the next five weeks, we will learn about designing studies, explore data via numerical summaries and visualizations, and learn about rules of probability and commonly used probability distributions. If you have any questions, feel free to post them on this module's forum (https://www.coursera.org/learn/probability-intro/module/rQ9Al/discussions?sort=lastActivityAtDesc&page=1) and discuss with your peers! To get started, view the learning objectives (https://www.coursera.org/learn/probability-intro/supplement/rooeY/lesson-learning-objectives) of Lesson 1 in this module.
Introduction to Data Project
To complete this assignment you will use R and RStudio installed on your local computer or through RStudio Cloud.
Exploratory Data Analysis and Introduction to Inference
Welcome to Week 2 of Introduction to Probability and Data! Hope you enjoyed materials from Week 1. This week we will delve into numerical and categorical data in more depth, and introduce inference.
レビュー
- 5 stars78.29%
- 4 stars17.35%
- 3 stars2.44%
- 2 stars0.64%
- 1 star1.25%
INTRODUCTION TO PROBABILITY AND DATA WITH R からの人気レビュー
Great course! Explained the concepts so clear and crisp and the exercises with R are great. The project reinforces all the concepts. All in all, a great course for beginners in statistics and R.
Great course - great guidance through RStudio coding. Would be great if the instructor could slow down a bit during lectures to make taking notes easier. Otherwise very happy with the course.
The final project is quite challenging but I have learned so much from this course. The lecture is great and the professor explains each concept well with examples. Really worthy of taking!!!
The Statistics course was excellent. The book provided additionally helped a lot. There could have been some instructional videos for R and some samples on how to analyse the visualization.
よくある質問
いつ講座や課題にアクセスできるようになりますか?
この専門講座をサブスクライブすると何を行うことができるようになりますか?
学資援助はありますか?
Will I receive a transcript from Duke University for completing this course?
さらに質問がある場合は、受講者ヘルプセンターにアクセスしてください。