このコースについて
49,029

次における5の3コース

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

約11時間で修了

推奨:4 weeks of study, 1-2 hours/week...

英語

字幕:英語, 中国語(簡体)

習得するスキル

Talent ManagementAnalyticsPerformance ManagementCollaboration

次における5の3コース

100%オンライン

自分のスケジュールですぐに学習を始めてください。

柔軟性のある期限

スケジュールに従って期限をリセットします。

約11時間で修了

推奨:4 weeks of study, 1-2 hours/week...

英語

字幕:英語, 中国語(簡体)

シラバス - 本コースの学習内容

1
2時間で修了

Introduction to People Analytics, and Performance Evaluation

In this module, you'll meet Professors Massey, Bidwell, and Haas, cover the structore and scope of the course, and dive into the first topic: Performance Evaluation. Performance evaluation plays an influential role in our work lives, whether it is used to reward or punish and/or to gather feedback. Yet its fundamental challenge is that the measures we used to evaluate performance are imperfect: we can't infer how hard or smart an employee is working based solely on outcomes. In this module, you’ll learn the four key issues in measuring performance: regression to the mean, sample size, signal independence, and process vs. outcome, and see them at work in current companies, including an extended example from the NFL. By the end of this module, you’ll understand how to separate skill from luck and learn to read noisy performance measures, so that you can go into your next performance evaluation sensitive to the role of chance, knowing your environment, and aware of the four most common biases, so that you can make more informed data-driven decisions about your company's most valuable asset: its employees....
11件のビデオ (合計83分), 2 readings, 1 quiz
11件のビデオ
Goals for the Course1 分
Course Outline and Overview3 分
People Analytics in Practice4 分
Performance Evaluation: the Challenge of Noisy Data6 分
Chance vs. Skill: the NFL Draft22 分
Finding Persistence: Regression to the Mean11 分
Extrapolating from Small Samples5 分
The Wisdom of Crowds: Signal Independence5 分
Process vs. Outcome7 分
Summary of Performance Evaluation3 分
2件の学習用教材
Performance Analytics Slides PDF10 分
People Analytics in Action: Additional Reading10 分
1の練習問題
Performance Evaluation Quiz20 分
2
2時間で修了

Staffing

In this module, you'll learn how to use data to better analyze the key components of the staffing cycle: hiring, internal mobility and career development, and attrition. You'll explore different analytic approaches to predicting performance for hiring and for optimizing internal mobility, to understanding and reducing turnover, and to predicting attrition. You'll also learn the critical skill of understanding causality so that you can avoid using data incorrectly. By the end of this module, you'll be able to use data to improve the quality of the decisions you make in getting the right people into the right jobs and helping them stay there, to benefit not only your organization but also employee's individual careers. ...
12件のビデオ (合計73分), 2 readings, 1 quiz
12件のビデオ
Staffing Analytics Overview2 分
Hiring 1: Predicting Performance8 分
Hiring 2: Fine-tuning Predictors9 分
Hiring 3: Using Data Analysis to Predict Performance7 分
Internal Mobility 1: Analyzing Promotibility4 分
Internal Mobility 2: Optimizing Movement within the Organization8 分
Causality 15 分
Causality 26 分
Attrition: Understanding and Reducing Turnover10 分
Turnover: Predicting Attrition7 分
Staffing Analytics Conclusion49
2件の学習用教材
Staffing Analytics Slides PDF10 分
Staffing Analytics in Action: Additional Reading10 分
1の練習問題
Staffing Quiz20 分
3
2時間で修了

Collaboration

In this module, you'll learn the basic principles behind using people analytics to improve collaboration between employees inside an organization so they can work together more successfully. You'll explore how data is used to describe, map, and evaluate collaboration networks, as well as how to intervene in collaboration networks to improve collaboration using examples from real-world companies. By the end of this module, you'll know how to deploy the tools and techniques of organizational network analysis to understand and improve collaboration patterns inside your organization to make your organization, and the people working within in it, more productive, effective, and successful. ...
7件のビデオ (合計75分), 2 readings, 1 quiz
7件のビデオ
Basics of Collaboration5 分
Describing Collaboration Networks14 分
Mapping Collaboration Networks16 分
Evaluating Collaboration Networks10 分
Measuring Outcomes9 分
Intervening in Collaboration Networks18 分
2件の学習用教材
Collaboration Slides PDF10 分
Collaboration Research in Action: Additional Readings10 分
1の練習問題
Collaboration Quiz20 分
4
2時間で修了

Talent Management and Future Directions

In this module, you explore talent analytics: how data may be used in talent assessment and development to maximize employee ability. You'll learn how to use data to move from performance evaluation to a more deeper analysis of employee evaluation so that you may be able to improve the both the effectiveness and the equitability of the promotion process at your firm. By the end of this module, you'll will understand the four major challenges of talent analytics: context, interdependence, self-fulfilling prophecies, and reverse causality, the challenges of working with algorithms, and some practical tips for incorporating data sensitively, fairly, and effectively into your own talent assessment and development processes to make your employees and your organization more successful. In the course conclusion, you'll also learn the current challenges and future directions of the field of people analytics, so that you may begin putting employee data to work in a ways that are smarter, practical and more powerful....
9件のビデオ (合計85分), 2 readings, 1 quiz
9件のビデオ
Interdependence6 分
Self-fulfilling Prophecies9 分
Reverse Causality4 分
Special Topics: Tests and Algorithms5 分
Prescriptions: Navigating the Challenges of Talent Analytics15 分
Course Conclusion: Organizational Challenges 110 分
Course Conclusion: Organizational Challenges 2 and Future Directions19 分
Goodbye and Good Luck!32
2件の学習用教材
Talent Analytics and Conclusion Slides PDF10 分
Talent Management in Action: Additional Readings10 分
1の練習問題
Talent Management Quiz20 分
4.5
500件のレビューChevron Right

27%

コース終了後に新しいキャリアをスタートした

29%

コースが具体的なキャリアアップにつながった

14%

昇給や昇進につながった

人気のレビュー

by AADec 22nd 2018

Thank you so much for this very helpful module! I hope you continue to inspire HR professionals around the world to use HR Analytics as an important means to drive organizational-related decisions.

by PNJul 28th 2017

This is a very well defined course to give a very good start to the knowledge of People Analytics. The professors have brought in numerous examples to make the understanding of analytics better.

講師

Avatar

Cade Massey

Practice Professor
The Wharton School
Avatar

Martine Haas

Associate Professor of Management
The Wharton School
Avatar

Matthew Bidwell

Associate Professor of Management
The Wharton School

ペンシルベニア大学(University of Pennsylvania)について

The University of Pennsylvania (commonly referred to as Penn) is a private university, located in Philadelphia, Pennsylvania, United States. A member of the Ivy League, Penn is the fourth-oldest institution of higher education in the United States, and considers itself to be the first university in the United States with both undergraduate and graduate studies. ...

ビジネス分析の専門講座について

This Specialization provides an introduction to big data analytics for all business professionals, including those with no prior analytics experience. You’ll learn how data analysts describe, predict, and inform business decisions in the specific areas of marketing, human resources, finance, and operations, and you’ll develop basic data literacy and an analytic mindset that will help you make strategic decisions based on data. In the final Capstone Project, you’ll apply your skills to interpret a real-world data set and make appropriate business strategy recommendations....
ビジネス分析

よくある質問

  • 修了証に登録すると、すべてのビデオ、テスト、およびプログラミング課題(該当する場合)にアクセスできます。ピアレビュー課題は、セッションが開始してからのみ、提出およびレビューできます。購入せずにコースを検討することを選択する場合、特定の課題にアクセスすることはできません。

  • コースに登録する際、専門講座のすべてのコースにアクセスできます。コースの完了時には修了証を取得できます。電子修了証が成果のページに追加され、そこから修了証を印刷したり、LinkedInのプロフィールに追加したりできます。コースの内容の閲覧のみを希望する場合は、無料でコースを聴講できます。

さらに質問がある場合は、受講者向けヘルプセンターにアクセスしてください。