Coursera
オンライン学位キャリアを探す企業用大学
  • 閲覧
  • 一番人気のコース
  • ログイン
  • 参加は無料
    Coursera
    • 閲覧
    • Bayesian Statistics
    Related topics:統計推計統計学確率分布応用統計学ニューラルネットワークETL

    フィルター

    「bayesian statistics」の68件の結果

    • 無料

      University of Pennsylvania

      University of Pennsylvania

      Network Dynamics of Social Behavior

      習得できるスキル: Econometrics, Bayesian Statistics, Probability & Statistics, Human Computer Interaction, User Research, Artificial Neural Networks, Research and Design, Modeling, Communication, Mathematics, Marketing, Business Analysis, Data Visualization Software, Market Research, Analysis, Behavioral Economics, Entrepreneurship, Psychologies, Business Psychology, Machine Learning, Data Visualization, Influencing, Design and Product

      4.6

      (335件のレビュー)

      Beginner · Course · 1-3 Months

    • Google Cloud

      Google Cloud

      Machine Learning in the Enterprise

      習得できるスキル: Machine Learning, General Statistics, Probability & Statistics, Data Management, Bayesian Statistics, Computer Programming, Statistical Programming, Tensorflow, Artificial Neural Networks, Regression, Machine Learning Algorithms, Business Psychology, Entrepreneurship, Cloud Computing

      4.6

      (1.4k件のレビュー)

      Advanced · Course · 1-3 Months

    • University of Illinois at Urbana-Champaign

      University of Illinois at Urbana-Champaign

      Predictive Analytics and Data Mining

      習得できるスキル: Decision Tree, Bayesian Statistics, Econometrics, Algebra, Mathematics, R Programming, Theoretical Computer Science, Probability & Statistics, Data Analysis, Data Management, Analysis, Data Mining, Statistical Programming, Financial Analysis, Big Data, Business Analytics, Machine Learning, Rstudio, Analytics, Algorithms, Machine Learning Algorithms, Data Clustering Algorithms, Supply Chain and Logistics

      4.4

      (125件のレビュー)

      Intermediate · Course · 1-4 Weeks

    • Johns Hopkins University

      Johns Hopkins University

      Mathematical Biostatistics Boot Camp 2

      習得できるスキル: Bayesian Statistics, Probability & Statistics, General Statistics, Statistical Tests, Process, Business Analysis, Data Analysis, Analysis, Experiment, Probability, Biostatistics

      4.3

      (107件のレビュー)

      Mixed · Course · 1-4 Weeks

    • 無料

      National Taiwan University

      National Taiwan University

      頑想學概率:機率一 (Probability (1))

      習得できるスキル: Mathematics, Probability & Statistics, Bayesian Statistics, Combinatorics, Mathematical Theory & Analysis

      4.8

      (305件のレビュー)

      Beginner · Course · 1-3 Months

    • Duke University

      Duke University

      Financial Risk Management with R

      習得できるスキル: Probability & Statistics, Data Structures, Bayesian Statistics, Accounting, Econometrics, Statistical Programming, Data Analysis, Finance, Data Management, R Programming, Financial Analysis, Business Analysis, Statistical Tests, Risk, Theoretical Computer Science, Risk Management

      4.5

      (210件のレビュー)

      Intermediate · Course · 1-4 Weeks

    • Placeholder
      Microsoft

      Microsoft

      Build and Operate Machine Learning Solutions with Azure

      習得できるスキル: Probability & Statistics, Bayesian Statistics, General Statistics, Cloud Computing, Microsoft Azure

      4.8

      (6件のレビュー)

      Intermediate · Course · 1-3 Months

    • Placeholder
      Databricks

      Databricks

      Bayesian Inference with MCMC

      習得できるスキル: Bayesian Statistics, General Statistics, Probability & Statistics

      3.0

      (10件のレビュー)

      Beginner · Course · 1-4 Weeks

    • Placeholder

      無料

      The State University of New York

      The State University of New York

      Empowering Yourself in a Post-Truth World

      習得できるスキル: Software Engineering, Theoretical Computer Science, General Statistics, Bayesian Statistics, Critical Thinking, Probability & Statistics, Business Analysis, Research and Design, Strategy and Operations, Inference, Software Architecture

      4.4

      (13件のレビュー)

      Beginner · Course · 1-3 Months

    • Placeholder
      Imperial College London

      Imperial College London

      Probabilistic Deep Learning with TensorFlow 2

      習得できるスキル: Computer Programming, Probability & Statistics, Machine Learning, Statistical Programming, Deep Learning

      4.7

      (74件のレビュー)

      Advanced · Course · 1-3 Months

    • Placeholder
      Imperial College London

      Imperial College London

      Global Master of Public Health

      習得できるスキル: Unix Shells, Strategy and Operations, Resilience, Probability & Statistics, Finance, Advertising, Leadership and Management, Regression, Marketing, Bayesian Statistics, Business Psychology, Design and Product, Entrepreneurship, Experiment, Graph Theory

      学位を取得する

      Degree

    • Placeholder
      Databricks

      Databricks

      Introduction to PyMC3 for Bayesian Modeling and Inference

      習得できるスキル: General Statistics, Probability & Statistics, Modeling, Communication, Marketing, Inference, Advertising, Bayesian

      3.4

      (9件のレビュー)

      Beginner · Course · 1-4 Weeks

    bayesian statisticsに関連する検索

    bayesian statistics: techniques and models
    bayesian statistics: time series analysis
    bayesian statistics: from concept to data analysis
    bayesian statistics: mixture models
    bayesian statistics: capstone project
    introduction to bayesian statistics
    1…3456

    要約して、bayesian statistics の人気コース10選をご紹介します。

    • Network Dynamics of Social Behavior: University of Pennsylvania
    • Machine Learning in the Enterprise: Google Cloud
    • Predictive Analytics and Data Mining: University of Illinois at Urbana-Champaign
    • Mathematical Biostatistics Boot Camp 2: Johns Hopkins University
    • 頑想學概率:機率一 (Probability (1)): National Taiwan University
    • Financial Risk Management with R: Duke University
    • Build and Operate Machine Learning Solutions with Azure: Microsoft
    • Bayesian Inference with MCMC: Databricks
    • Empowering Yourself in a Post-Truth World: The State University of New York
    • Probabilistic Deep Learning with TensorFlow 2: Imperial College London

    Probability And Statisticsで学べるスキル

    Rプログラミング (19)
    推論 (16)
    線形回帰 (12)
    統計解析 (12)
    統計的推論 (11)
    回帰分析 (10)
    生物統計学 (9)
    ベイズ (7)
    ロジスティック回帰 (7)
    確率分布 (7)
    ベイズ統計 (6)
    医療統計 (6)

    ベイズ統計に関するよくある質問

    • Bayesian Statistics is an approach to statistics based on the work of the 18th century statistician and philosopher Thomas Bayes, and it is characterized by a rigorous mathematical attempt to quantify uncertainty. The likelihood of uncertain events is unknowable, by definition, but Bayes’s Theorem provides equations for the statistical inference of their probability based on prior information about an event - which can be updated based on the results of new data.

      While its origins lie hundreds of years in the past, Bayesian statistical approaches have become increasingly important in recent decades. The calculations at the heart of Bayesian statistics require intensive numerical integrations to solve, which were often infeasible before low-cost computing power became more widely accessible. But today, statisticians can evaluate integrals by running hundreds of thousands of simulation iterations with Markov chain Monte Carlo methods on an ordinary laptop computer.

      This new accessibility of computational power to quantify uncertainty has enabled Bayesian statistics to showcase its strength: making predictions. This capability is critical to many data science applications, and especially to the training of machine learning algorithms to create predictive analytics that assist with real-world decision-making problems. As with other areas of data science, statisticians often rely on R programming and Python programming skills to solve Bayesian equations.‎

    • Bayesian statistical approaches are essential to many data science and machine learning techniques, making an understanding of Bayes’ Theorem and related concepts essential to careers in these fields.

      If you wish to dive more deeply into the theoretical aspects of Bayesian statistics and the modeling of probability more generally, you can also pursue a career as a statistician. These experts may work in academia or the private sector, and usually have at least a master’s degree in mathematics or statistics. According to the Bureau of Labor Statistics, statisticians earn a median annual salary of $91,160.‎

    • Absolutely. Coursera gives you opportunities to learn about Bayesian statistics and related concepts in data science and machine learning through courses and Specializations from top-ranked schools like Duke University, the University of California, Santa Cruz, and the National Research University Higher School of Economics in Russia. You can also learn from industry leaders like Google Cloud, or through Coursera’s own exclusive Guided Projects, which let you build skills by completing step-by-step tutorials taught by expert instructors.

      Regardless of your needs, the combination of high-equality education, a flexible schedule, and low tuition costs leaves no uncertainty about the value of learning about Bayesian statistics on Coursera.‎

    • A background in statistics and certain areas of math, like algebra, can be extremely helpful when learning Bayesian statistics. This includes knowledge of and experience with statistical methods and statistical software. Any type of experience working with data, especially on a large scale, can also help. Classes, degrees, or work experience in biostatistics, psychometrics, analytics, quantitative psychology, banking, and public health can also be beneficial, especially if you plan to enter a career that centers around one of these topics or a related field. However, they aren't necessary for learning about Bayesian statistics in general.‎

    • People who aspire to work in roles that use Bayesian statistics should have analytical minds and a passion for using data to help other businesses and other people. You'll need good computer skills and a passion for statistics. You'll also need to be a good multitasker with excellent time management skills as well as someone who is highly organized. Good problem-solving skills are a must, as is flexibility. There are times when you may have total autonomy over your job and others when you're working with a team. That means you'll also need great interpersonal skills and the ability to communicate well, both verbally and in writing.‎

    • Anyone who works with data or seeks a career working with data may be interested in learning Bayesian statistics. Many companies that seek employees to work in fields involving statistics or big data prefer someone who understands and can implement the theories of Bayesian statistics to someone who can't. These companies typically offer competitive salaries and benefits and room for career advancement. Careers that may use Bayesian statistics also tend to have a good outlook for the future. Best of all, learning about this topic can open you up to jobs in numerous industries, ranging from banking and finance to health care and biostatistics.‎

    このFAQの内容は、情報提供のみを目的としています。受講生は、自分の個人的、職業的、経済的な目標に合ったコースやその他の資格を取得するために、さらに調べることをお勧めします。
    探索する他のトピック
    Placeholder
    芸術と人文
    338コース
    Placeholder
    ビジネス
    1095コース
    Placeholder
    コンピューターサイエンス
    668コース
    Placeholder
    データサイエンス
    425コース
    Placeholder
    情報技術
    145コース
    Placeholder
    健康
    471コース
    Placeholder
    数学と論理
    70コース
    Placeholder
    自己啓発
    137コース
    Placeholder
    物理科学とエンジニアリング
    413コース
    Placeholder
    社会科学
    401コース
    Placeholder
    言語学習
    150コース

    Coursera Footer

    キャリアをスタート、またはキャリアアップする

    • Google データアナリスト
    • Googleプロジェクトマネジメント
    • グーグルUXデザイン
    • Google ITサポート
    • IBMデータサイエンス
    • IBMデータアナリスト
    • ExcelとRを使用したIBMデータ分析
    • IBMサイバーセキュリティ・アナリスト
    • IBMデータエンジニアリング
    • IBMフルスタック・クラウドデベロッパー
    • Facebookソーシャルメディアマーケティング
    • Facebookマーケティング分析
    • Salesforce営業開発担当者
    • Salesforce Sales Operations
    • インテュイット簿記
    • Google Cloud 認定資格の取得準備:クラウドアーキテクト
    • Google Cloud 認定資格の取得準備:クラウドデータエンジニア
    • キャリアをスタートさせましょう
    • 証明書の取得準備
    • キャリアアップ

    人気のあるトピックを閲覧

    • 無料コース
    • 言語を学ぶ
    • Python
    • Java
    • Webデザイン
    • SQL
    • Cursos Gratis
    • Microsoft Excel
    • プロジェクトマネジメント
    • サイバーセキュリティ
    • 人事
    • データサイエンスの無料コース
    • 英語のスピーキング
    • コンテンツのライティング
    • フルスタックWeb開発
    • 人工知能
    • Cプログラミング
    • コミュニケーションスキル
    • ブロックチェーン
    • すべてのコースを見る

    人気のコースと記事

    • データサイエンスチームのためのスキル
    • データ駆動型意思決定
    • ソフトウェアエンジニアリングのスキル
    • エンジニアリングチームのためのソフトスキル
    • マネジメントスキル
    • マーケティングのスキル
    • セールスチームのためのスキル
    • プロダクトマネージャのスキル
    • ファイナンススキル
    • イギリスで人気のデータサイエンスコース
    • Beliebte Technologiekurse in Deutschland
    • 人気のサイバーセキュリティ証明書
    • 人気の IT 証明書
    • 人気の QL 証明書
    • マーケティングマネージャーキャリアガイド
    • プロジェクトマネージャーキャリアガイド
    • Pythonプログラミングスキル
    • Web開発者キャリアガイド
    • データアナリストのスキル
    • UXデザイナーのためのスキル

    オンラインで学位または証明書を取得する

    • MasterTrack®認定
    • プロフェッショナル認定
    • 大学証明書
    • MBAとビジネス学位
    • データサイエンスの学位
    • コンピュータサイエンスの学位
    • データ分析の学位
    • 公衆衛生学位
    • 社会科学の学位
    • 経営学の学位
    • ヨーロッパのトップレベルの大学の学位
    • 修士号
    • 学士号
    • パフォーマンスパスウェイの学位
    • BSc コース
    • 学士号とは何ですか?
    • 修士号の取得にはどれくらい時間がかかりますか?
    • オンラインMBAに価値がありますか?
    • 大学院で学ぶための7つの方法
    • すべての証明書を表示する

    Coursera

    • 概要
    • Courseraのサービス
    • リーダーシップ
    • キャリア
    • カタログ
    • Coursera Plus
    • プロフェッショナル認定
    • MasterTrack®認定
    • 学位
    • 企業用
    • 政府向け
    • キャンパス向け
    • パートナーになる
    • 新型コロナウイルス対策

    コミュニティ

    • 受講生
    • パートナー
    • 開発者
    • ベータテスター
    • 翻訳者
    • ブログ
    • 技術ブログ
    • 教育センター

    さらに表示

    • 報道関係者
    • 投資家
    • 規約
    • プライバシー
    • ヘルプ
    • アクセシビリティ
    • お問い合わせ
    • 記事
    • ディレクトリ
    • アフィリエイト
    場所を選ばす学習する
    App StoreからダウンロードGoogle Playで取得
    Placeholder
    ©2022 Coursera Inc.All rights reserved.
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder