Coursera
オンライン学位キャリアを探す企業用大学
  • 閲覧
  • 一番人気のコース
  • ログイン
  • 参加は無料
    Coursera
    • 閲覧
    • Neural Networks
    Related topics:ディープラーニングdeeplearning.ai音声認識応用統計学ニューラルネットワーク確率

    フィルター

    「neural networks」の335件の結果

    • IBM

      IBM

      Advanced Data Science with IBM

      習得できるスキル: Algorithms, Apache, Applied Machine Learning, Artificial Neural Networks, Basic Descriptive Statistics, Bayesian Statistics, Big Data, Change Management, Cloud Computing, Computer Architecture, Computer Graphic Techniques, Computer Graphics, Computer Programming, Computer Vision, Correlation And Dependence, Data Analysis, Data Management, Data Model, Data Structures, Data Visualization, Databases, Deep Learning, Dimensionality Reduction, Distributed Computing Architecture, Econometrics, Estimation, Experiment, Extract, Transform, Load, General Statistics, IBM Cloud, Leadership and Management, Machine Learning, Machine Learning Algorithms, Natural Language Processing, Plot (Graphics), Probability & Statistics, Probability Distribution, Process, Programming Principles, Python Programming, Regression, SQL, Statistical Machine Learning, Statistical Programming, Statistical Visualization, Strategy and Operations, Theoretical Computer Science

      4.3

      (2.9k件のレビュー)

      Advanced · Specialization

    • University of Pennsylvania

      University of Pennsylvania

      AI For Business

      習得できるスキル: Accounting, Applied Machine Learning, Artificial Neural Networks, Big Data, Business Analysis, Clinical Data Management, Computational Thinking, Computer Programming, Customer Analysis, Customer Relationship Management, Customer Success, Data Analysis, Data Management, Data Mining, Data Warehousing, Database Administration, Databases, Deep Learning, Entrepreneurship, Feature Engineering, Finance, Financial Analysis, Human Resources, Leadership, Leadership and Management, Machine Learning, Marketing, Natural Language Processing, Reinforcement Learning, Sales, Security Engineering, Software Security, Strategy and Operations, Theoretical Computer Science

      4.6

      (79件のレビュー)

      Beginner · Specialization

    • Johns Hopkins University

      Johns Hopkins University

      Advanced Statistics for Data Science

      習得できるスキル: Artificial Neural Networks, Bayesian Statistics, Biostatistics, Calculus, Dimensionality Reduction, Econometrics, Experiment, General Statistics, Linear Algebra, Machine Learning, Machine Learning Algorithms, Mathematics, Probability & Statistics, Probability Distribution, Regression, Statistical Machine Learning, Statistical Tests

      4.4

      (657件のレビュー)

      Advanced · Specialization

    • Stanford University

      Stanford University

      Probabilistic Graphical Models

      習得できるスキル: Bayesian Network, Bayesian Statistics, Behavioral Economics, Business Psychology, Computer Architecture, Computer Programming, Data Analysis, Decision Making, Distributed Computing Architecture, Entrepreneurship, Feature Engineering, General Statistics, Graph Theory, Leadership and Management, Machine Learning, Markov Model, Mathematics, Modeling, Other Programming Languages, Probability, Probability & Statistics, Probability Distribution

      4.6

      (1.5k件のレビュー)

      Advanced · Specialization

    • University of Washington

      University of Washington

      Machine Learning

      習得できるスキル: Algorithms, Analysis, Applied Machine Learning, Business Analysis, Business Psychology, Computational Logic, Computational Thinking, Computer Architecture, Computer Graphic Techniques, Computer Graphics, Computer Programming, Data Analysis, Data Management, Data Structures, Deep Learning, Distributed Computing Architecture, Entrepreneurship, Estimation, Exploratory Data Analysis, General Statistics, Linear Regression, Machine Learning, Machine Learning Algorithms, Markov Model, Mathematical Theory & Analysis, Mathematics, Modeling, Natural Language Processing, Probability & Statistics, Python Programming, Regression, Statistical Analysis, Statistical Machine Learning, Statistical Programming, Theoretical Computer Science

      4.6

      (15.6k件のレビュー)

      Intermediate · Specialization

    • University of Colorado Boulder

      University of Colorado Boulder

      Advanced Business Analytics

      習得できるスキル: Algorithms, Analysis, Analytics, Applied Machine Learning, Artificial Neural Networks, Big Data, Business Analysis, Business Analytics, Cloud Computing, Computer Vision, Correlation And Dependence, Data Analysis, Data Analysis Software, Data Management, Data Visualization, Databases, Exploratory Data Analysis, General Statistics, Machine Learning, Machine Learning Algorithms, Markov Model, Mathematical Optimization, Mathematical Theory & Analysis, Modeling, Plot (Graphics), Probability & Statistics, Regression, SQL, Spreadsheet Software, Statistical Analysis, Statistical Programming, Theoretical Computer Science

      4.6

      (4.7k件のレビュー)

      Intermediate · Specialization

    • Placeholder
      DeepLearning.AI

      DeepLearning.AI

      AI For Everyone (すべての人のためのAIリテラシー講座)

      習得できるスキル: Language, Machine Learning, Deep Learning, Analysis

      4.8

      (150件のレビュー)

      Beginner · Course

    • Placeholder
      DeepLearning.AI

      DeepLearning.AI

      Sequence Models

      習得できるスキル: Theoretical Computer Science, Natural Language, Entrepreneurship, Speech, Interactive Design, Machine Learning, Modeling, Language, Translation, Marketing, Communication, Advertising, Deep Learning, Natural Language Processing, Human Computer Interaction, Business Psychology, Linear Algebra, Artificial Neural Networks, Beam Robotics, Computer Graphics, Algorithms

      4.8

      (27.9k件のレビュー)

      Intermediate · Course

    • Placeholder
      Google Cloud

      Google Cloud

      Advanced Machine Learning on Google Cloud

      習得できるスキル: Apache, Applied Machine Learning, Artificial Neural Networks, Business Psychology, Cloud Computing, Computational Thinking, Computer Architecture, Computer Programming, Computer Vision, Data Analysis, Data Management, Deep Learning, Distributed Computing Architecture, Entrepreneurship, General Statistics, Google Cloud Platform, Hardware Design, Machine Learning, Natural Language Processing, Performance Management, Probability & Statistics, Python Programming, Recommender Systems, Statistical Programming, Strategy and Operations, Theoretical Computer Science

      4.4

      (2.2k件のレビュー)

      Advanced · Specialization

    • Placeholder
      Microsoft

      Microsoft

      Microsoft Azure Data Scientist Associate (DP-100)

      習得できるスキル: Algorithms, Apache, Applied Machine Learning, Artificial Neural Networks, Bayesian Statistics, Big Data, Cloud Computing, Computer Programming, Computer Vision, Data Management, Deep Learning, General Statistics, Machine Learning, Machine Learning Algorithms, Microsoft Azure, Modeling, Probability & Statistics, Python Programming, Regression, Statistical Machine Learning, Statistical Programming, Strategy and Operations, Theoretical Computer Science

      4.5

      (72件のレビュー)

      Intermediate · Professional Certificate

    • Placeholder
      DeepLearning.AI

      DeepLearning.AI

      Natural Language Processing in TensorFlow

      習得できるスキル: Python Programming, Language, Natural Language, Computer Programming, Applied Machine Learning, Artificial Neural Networks, Machine Learning, Tensorflow, Deep Learning, Natural Language Processing, Statistical Programming

      4.6

      (5.9k件のレビュー)

      Intermediate · Course

    • Placeholder
      New York Institute of Finance

      New York Institute of Finance

      Machine Learning for Trading

      習得できるスキル: Artificial Neural Networks, Business Psychology, Cloud Computing, Cloud Platforms, Computer Programming, Entrepreneurship, Finance, General Statistics, Investment Management, Leadership and Management, Machine Learning, Marketing, Mathematics, Modeling, Probability & Statistics, Python Programming, Reinforcement Learning, Risk Management, Sales, Statistical Programming, Strategy, Strategy and Operations, Trading

      3.9

      (938件のレビュー)

      Intermediate · Specialization

    neural networksに関連する検索

    neural networks and deep learning
    neural networks and random forests
    convolutional neural networks
    deep neural networks with pytorch
    convolutional neural networks in tensorflow
    improving deep neural networks: hyperparameter tuning, regularization and optimization
    introduction to deep learning & neural networks with keras
    predicting the weather with artificial neural networks
    1…678…28

    要約して、neural networks の人気コース10選をご紹介します。

    • Advanced Data Science with IBM: IBM
    • AI For Business: University of Pennsylvania
    • Advanced Statistics for Data Science: Johns Hopkins University
    • Probabilistic Graphical Models: Stanford University
    • Machine Learning: University of Washington
    • Advanced Business Analytics: University of Colorado Boulder
    • AI For Everyone (すべての人のためのAIリテラシー講座): DeepLearning.AI
    • Sequence Models: DeepLearning.AI
    • Advanced Machine Learning on Google Cloud: Google Cloud
    • Microsoft Azure Data Scientist Associate (DP-100): Microsoft

    Machine Learningで学べるスキル

    Pythonプログラミング (33)
    TensorFlow (32)
    ディープラーニング (30)
    人工ニューラルネットワーク (24)
    ビッグデータ (18)
    統計的分類 (17)
    強化学習 (13)
    代数 (10)
    ベイズ (10)
    線型代数学 (10)
    線形回帰 (9)
    NumPy (9)

    ニューラルネットワークに関するよくある質問

    • Neural networks, also known as neural nets or artificial neural networks (ANN), are machine learning algorithms organized in networks that mimic the functioning of neurons in the human brain. Using this biological neuron model, these systems are capable of unsupervised learning from massive datasets.

      This is an important enabler for artificial intelligence (AI) applications, which are used across a growing range of tasks including image recognition, natural language processing (NLP), and medical diagnosis. The related field of deep learning also relies on neural networks, typically using a convolutional neural network (CNN) architecture that connects multiple layers of neural networks in order to enable more sophisticated applications.

      For example, using deep learning, a facial recognition system can be created without specifying features such as eye and hair color; instead, the program can simply be fed thousands of images of faces and it will learn what to look for to identify different individuals over time, in much the same way that humans learn. Regardless of the end-use application, neural networks are typically created in TensorFlow and/or with Python programming skills.‎

    • Neural networks are a fundamental concept to understand for jobs in artificial intelligence (AI) and deep learning. And, as the number of industries seeking to leverage these approaches continues to grow, so do career opportunities for professionals with expertise in neural networks. For instance, these skills could lead to jobs in healthcare creating tools to automate X-ray scans or assist in drug discovery, or a job in the automotive industry developing autonomous vehicles.

      Professionals dedicating their careers to cutting-edge work in neural networks typically pursue a master’s degree or even a doctorate in computer science. This high-level expertise in neural networks and artificial intelligence are in high demand; according to the Bureau of Labor Statistics, computer research scientists earn a median annual salary of $122,840 per year, and these jobs are projected to grow much faster than average over the next decade.‎

    • Absolutely - in fact, Coursera is one of the best places to learn about neural networks, online or otherwise. You can take courses and Specializations spanning multiple courses in topics like neural networks, artificial intelligence, and deep learning from pioneers in the field - including deeplearning.ai and Stanford University. Coursera has also partnered with industry leaders such as IBM, Google Cloud, and Amazon Web Services to offer courses that can lead to professional certificates in applied AI and other areas. You can even learn about neural networks with hands-on Guided Projects, a way to learn on Coursera by completing step-by-step tutorials led by experienced instructors.‎

    • Before starting to learn neural networks, it's important to have experience creating and using algorithms since neural networks run on complicated algorithms. You should also have fundamental math skills at least, but you'll be at a better advantage if you have knowledge of linear algebra, calculus, statistics, and probability. Being proficient at problem-solving is also important before starting to learn neural networks. An understanding of how the human brain processes information is helpful since artificial neural networks are patterned after how the brain works. You'll also benefit from having experience using any programming language, in particular Java, R, Python, or C++. This includes experience using these languages' libraries, which you'll access to apply the algorithms used in neural networks.‎

    • People who are best suited for roles in neural networks are innovative, interested in technology, and have the ability to identify patterns in large amounts of data and draw conclusions from them. People who have a desire to make life and work easier for human beings through artificial technology are well suited for roles in neural networks too. Also, people who have good programming skills and data engineering skills like SQL, data analysis, ETL, and data visualization are likely well suited for roles in neural networks.‎

    • If you are interested in the field of artificial intelligence, learning about neural networks is right for you. If your current or future position involves data analysis, pattern recognition, optimization, forecasting, or decision-making, you might also benefit from learning neural networks. Neural networks are also used in image recognition software, speech synthesis, self-driving vehicles, navigation systems, industrial robots, and algorithms for protecting information systems, so if you're interested in these technologies, learning neural networks may be helpful to you.‎

    このFAQの内容は、情報提供のみを目的としています。受講生は、自分の個人的、職業的、経済的な目標に合ったコースやその他の資格を取得するために、さらに調べることをお勧めします。
    探索する他のトピック
    Placeholder
    芸術と人文
    338コース
    Placeholder
    ビジネス
    1095コース
    Placeholder
    コンピューターサイエンス
    668コース
    Placeholder
    データサイエンス
    425コース
    Placeholder
    情報技術
    145コース
    Placeholder
    健康
    471コース
    Placeholder
    数学と論理
    70コース
    Placeholder
    自己啓発
    137コース
    Placeholder
    物理科学とエンジニアリング
    413コース
    Placeholder
    社会科学
    401コース
    Placeholder
    言語学習
    150コース

    Coursera Footer

    キャリアをスタート、またはキャリアアップする

    • Google データアナリスト
    • Googleプロジェクトマネジメント
    • グーグルUXデザイン
    • Google ITサポート
    • IBMデータサイエンス
    • IBMデータアナリスト
    • ExcelとRを使用したIBMデータ分析
    • IBMサイバーセキュリティ・アナリスト
    • IBMデータエンジニアリング
    • IBMフルスタック・クラウドデベロッパー
    • Facebookソーシャルメディアマーケティング
    • Facebookマーケティング分析
    • Salesforce営業開発担当者
    • Salesforce Sales Operations
    • インテュイット簿記
    • Google Cloud 認定資格の取得準備:クラウドアーキテクト
    • Google Cloud 認定資格の取得準備:クラウドデータエンジニア
    • キャリアをスタートさせましょう
    • 証明書の取得準備
    • キャリアアップ

    人気のあるトピックを閲覧

    • 無料コース
    • 言語を学ぶ
    • Python
    • Java
    • Webデザイン
    • SQL
    • Cursos Gratis
    • Microsoft Excel
    • プロジェクトマネジメント
    • サイバーセキュリティ
    • 人事
    • データサイエンスの無料コース
    • 英語のスピーキング
    • コンテンツのライティング
    • フルスタックWeb開発
    • 人工知能
    • Cプログラミング
    • コミュニケーションスキル
    • ブロックチェーン
    • すべてのコースを見る

    人気のコースと記事

    • データサイエンスチームのためのスキル
    • データ駆動型意思決定
    • ソフトウェアエンジニアリングのスキル
    • エンジニアリングチームのためのソフトスキル
    • マネジメントスキル
    • マーケティングのスキル
    • セールスチームのためのスキル
    • プロダクトマネージャのスキル
    • ファイナンススキル
    • イギリスで人気のデータサイエンスコース
    • Beliebte Technologiekurse in Deutschland
    • 人気のサイバーセキュリティ証明書
    • 人気の IT 証明書
    • 人気の QL 証明書
    • マーケティングマネージャーキャリアガイド
    • プロジェクトマネージャーキャリアガイド
    • Pythonプログラミングスキル
    • Web開発者キャリアガイド
    • データアナリストのスキル
    • UXデザイナーのためのスキル

    オンラインで学位または証明書を取得する

    • MasterTrack®認定
    • プロフェッショナル認定
    • 大学証明書
    • MBAとビジネス学位
    • データサイエンスの学位
    • コンピュータサイエンスの学位
    • データ分析の学位
    • 公衆衛生学位
    • 社会科学の学位
    • 経営学の学位
    • ヨーロッパのトップレベルの大学の学位
    • 修士号
    • 学士号
    • パフォーマンスパスウェイの学位
    • BSc コース
    • 学士号とは何ですか?
    • 修士号の取得にはどれくらい時間がかかりますか?
    • オンラインMBAに価値がありますか?
    • 大学院で学ぶための7つの方法
    • すべての証明書を表示する

    Coursera

    • 概要
    • Courseraのサービス
    • リーダーシップ
    • キャリア
    • カタログ
    • Coursera Plus
    • プロフェッショナル認定
    • MasterTrack®認定
    • 学位
    • 企業用
    • 政府向け
    • キャンパス向け
    • パートナーになる
    • 新型コロナウイルス対策

    コミュニティ

    • 受講生
    • パートナー
    • 開発者
    • ベータテスター
    • 翻訳者
    • ブログ
    • 技術ブログ
    • 教育センター

    さらに表示

    • 報道関係者
    • 投資家
    • 規約
    • プライバシー
    • ヘルプ
    • アクセシビリティ
    • お問い合わせ
    • 記事
    • ディレクトリ
    • アフィリエイト
    • Modern Slavery Statement(現代奴隷法に関する表明)
    場所を選ばす学習する
    App StoreからダウンロードGoogle Playで取得
    Placeholder
    ©2022 Coursera Inc.All rights reserved.
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder
    • Placeholder